Gradient曾经是个让我迷惑的词,现在通过Matrix来看看
先来看看opencv的代码
gray = cv2.cvtColor(im, cv2.COLOR_RGB2GRAY)
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1)
可以看到Sobel函数后面有两个参数0,1。其中(1,0)表示
S
o
b
e
l
x
Sobel_x
Sobelx,(0,1)表示
S
o
b
e
l
y
Sobel_y
Sobely
g
r
a
d
i
e
n
t
=
∑
(
r
e
g
i
o
n
∗
S
x
)
gradient=∑(region∗S_x)
gradient=∑(region∗Sx)
同时我们得到了 G r a d i e n t x Gradient_x Gradientx和 G r a d i e n t y Gradient_y Gradienty
G = G x 2 + G y 2 \mathbf {G} ={\sqrt {{\mathbf {G} _{x}}^{2}+{\mathbf {G} _{y}}^{2}}} G=Gx2+Gy2
与此同时我们也可以得到
Θ = atan ( G y G x ) {\displaystyle \mathbf {\Theta } =\operatorname {atan} \left({\mathbf {G} _{y} \over \mathbf {G} _{x}}\right)} Θ=atan(GxGy)
接下来我们就可以通过threshold来控制gradient和direction,上代码!
# Apply each of the thresholding functions
# You should write these functions on your own
gradx = abs_sobel_thresh(image, orient='x', sobel_kernel=ksize, thresh=(0, 255))
grady = abs_sobel_thresh(image, orient='y', sobel_kernel=ksize, thresh=(0, 255))
mag_binary = mag_thresh(image, sobel_kernel=ksize, mag_thresh=(0, 255))
dir_binary = dir_threshold(image, sobel_kernel=ksize, thresh=(0, np.pi/2))
combined = np.zeros_like(dir_binary)
combined[((gradx == 1) & (grady == 1)) | ((mag_binary == 1) & (dir_binary == 1))] = 1