原创:项道德(daode3056)
运动粒子的轨迹,大多是符合三角函数、双曲函数数学描述的,在平面中的描述是二维,在空间中的描述是三维,带时间、空间的描述是四维,三维与四维的描述最好是3D动画,重要的是,这种描述必须是按物理规律与公式的,这里重点是利用归一化Hermite多项式来构造二维运动的轨道运动模型【p,q取0---10阶,u取-PI到PI】,即:
Xp = HermitePoly0to10(p, u);
Yp = HermitePoly0to10(q, u);
Hermite多项式来自一维谐振子偏微分方程的解,各阶正符合能级分布,所以归一化Hermite多项式是大自然的语言,是广义傅里叶级数的正交基。0--10阶的多项式如下:
正交归一化等式:
现在,我们只考虑它的极简模式:平面的二维运动,用程序的图像输出以描述各阶的曲线,现分享给大家,以方便各们深入探究量子规律:
再在三维以上配合自旋、角动量计算,加入Pauli、Dirac矩阵,将有许多内容要研究。
在三角函数方面,主要是稳定态的轨迹,有理曲线簇呈现的花样如下:
这类曲线,大多被用于美术与工程设计中。
Hermite多项式另一变换后的曲线,可用于神经网络与路径生成:
原创:项道德(daode3056,微信:daode1212)