y=sinx在[0,2π]上的反函数?y=sinx在[π/2,π]上的反函数是x=π-arcsiny?通过此文弄清楚三角函数反函数中的关系

起因:今天在做二重积分交换积分次序时,需要涉及y=sinx在[0,2π]上的反函数,很明显如果整个区间内都是x=arcsin y,题目就无法进行下去,于是我打开了参考答案。

1 反函数部分知识

在这里插入图片描述
在这里插入图片描述

我们只有搞清楚反函数的图像,尤其是其定义域值域,才知道如何变换,在将来更多的题型中可以灵活应用。
链接:三角函数反函数相关知识,有图像更为直观

2 奇变偶不变,符号看象限在这里插入图片描述
题目与解析

在这里插入图片描述错因:

  1. 把sinx在[0,2π]的反函数都看成arcsiny
  2. 对某些反函数的定义域、值域、图像不够了解

举例:求sinx[π/2,π]上的反函数
[0,π/2]时,x=arcsin y,结合arcsin y的定义域,可知无法直接应用在[π/2,π]上;
于是利用诱导公式,当x在[π/2,π]时,π-x属于[0,π/2],y=sinx=sin(π-x);
此时,对应的反函数arcsin y=π-x,易得x=π-arcsiny.

总结

关键在于利用好诱导公式与理解三角函数对应反函数的图像即可。
知乎相关问题链接

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

火柴先生

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值