数学分析(一)-实数集与函数3-函数概念6-基本初等函数4-三角函数3:tan【奇函数】【增函数】【定义域:(-π/2,π/2)值域:(-∞,+∞)】【tan-π/2=-∞、tanπ/2=+∞】

本文详细探讨了正切函数tanx的定义域、奇偶性、周期性、值域、单调性以及图像,并介绍了反正切函数arctanx的性质。tanx在区间(0, 2π)上单调递增,值域为实数集R,周期为π。而arctanx是tanx在(−π/2,π/2)上的反函数,定义域为R。此外,文章还涵盖了三角恒等式的重要公式。" 103277268,8605303,RabbitMQ入门教程:Spring Boot应用实践,"['消息队列', 'RabbitMQ', 'Spring Boot', 'Java开发', 'AMQP']
摘要由CSDN通过智能技术生成

一、正切函数 tan ⁡ x \tan{x} tanx

在这里插入图片描述
在这里插入图片描述
根据正切的定义, 我们知道, tan ⁡ x = sin ⁡ x cos ⁡ x \tan x=\cfrac{\sin x}{\cos x} tanx=cosxsinx, 现仿照学习正弦函数的性质, 探究正切函数的性质

1. 定义域

因为 cos ⁡ x \cos x cosx 不能为零, 所以 x x x 不能为 y y y 轴上的角。因此定义域为:

{ x ∣   x ≠ π 2 + k π , k ∈ Z } \left\{x \left\lvert\, x \neq \cfrac{\pi}{2}+k \pi\right., k \in \mathbb{Z}\right\} { x x=2π+,kZ}

2. 奇偶性

由诱导公式得, tan ⁡ ( − x ) = − tan ⁡ x \tan (-x)=-\tan x tan(x)=tanx
检查定义域:
{ x ∣   x ≠ π 2 + k π , k ∈ Z } \left\{x \left\lvert\, x \neq \cfrac{\pi}{2}+k \pi\right., k \in \mathbb{Z}\right\} { x x=2π+,kZ},
关于原点对称
因此,正切函数是奇函数

3. 周期性

tan ⁡ ( x + π ) = tan ⁡ ( π ) \tan (x+\pi)=\tan (\pi) tan(x+π)=tan(π) 得, tan ⁡ x \tan x tanx 的周期为 π \pi π

由反证法可知, tan ⁡ x \tan x tanx 的最小正周期是 π \pi π

4. 值域

初始时的想法: sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx 同号时,若 cos ⁡ x → 0 \cos x \rightarrow 0 cosx0,则 tan ⁡ x → + ∞ \tan x \rightarrow+\infty tanx+; 异号时,则 tan ⁡ x → − ∞ \tan x \rightarrow-\infty tanx。因此,边界边可以得出。那么值域是否为 R \mathbb{R} R 呢?

参考课本,发现采用的是三角函数线的方式:

考虑 x ∈ [ 0 , π 2 ) x \in\left[0, \cfrac{\pi}{2}\right) x[0,2π) 。角的终边与单位圆的交点为 B ( x 0 , y 0 ) B\left(x_{0}, y_{0}\right) B(x0,y0), 过点 B B B x x x 轴垂线 B M B M BM; 过点 A ( 1 , 0 ) A(1,0) A(1,0) x x x 轴垂线, 交角 x x x 的终边于点 T T T

在这里插入图片描述
tan ⁡ x = y 0 x 0 = M B O B = A T O A = A T \tan x=\cfrac{y_{0}}{x_{0}}=\cfrac{M B}{O B}=\cfrac{A T}{O A}=A T tanx=x0y0=OBMB=OAAT=AT

我们可以看到,蓝色的线既为正切的值。我们可以得到如下信息:

  • x ( 0 → π 2 ) x\left(0 \rightarrow \cfrac{\pi}{2}\right) x(02π) 时, tan ⁡ x \tan x tanx的变化是连续的 ( 0 → + ∞ ) (0 \rightarrow+\infty) (0+)
  • x → π 2 x \rightarrow \cfrac{\pi}{2} x2π 时, tan ⁡ x → + ∞ \tan x \rightarrow+\infty tanx+ (OB趋"于"行 A T A T AT )
  • x x x 逐渐增大时, tan ⁡ x \tan x tanx 增速很快(?)

因为 tan ⁡ x \tan x tanx 为奇函数, 所以在 x ( − π 2 → 0 ) x\left(-\cfrac{\pi}{2} \rightarrow 0\right) x(2π0) 时, tan ⁡ x \tan x tanx 的变化是 ( − ∞ → 0 ) (-\infty \rightarrow 0) (0)
至此, 我们得出结论, tan ⁡ x \tan x tanx 的值域为 R \mathbb{R} R

5. 单调性

∀ x 1 , x 2 ∈ [ 0 , π 2 ) , 且  x 1 < x 2  :  \forall x_{1}, x_{2} \in\left[0, \cfrac{\pi}{2}\right) \text {, 且 } x_{1}<x_{2} \text { : } x1,x2[0,2π) x1<x2 : 

∀ x 1 , x 2 ∈ [ 0 , π 2 ) tan ⁡ x 1 tan ⁡ x 2 = sin ⁡ x 1 sin ⁡ x 2 ⋅ cos ⁡ x 2 cos ⁡ x 1 ( ∗ ) ∵ 0 ≤ x 1 < x 2 < π 2 ∴ 0 ≤ sin ⁡ x 1 < sin ⁡ x 2 < 1 , 0 < cos ⁡ x 2 < cos ⁡ x 1 ≤ 1 ∴ 0 ≤ sin ⁡ x 1 sin ⁡ x 2 < 1 , 0 < cos ⁡ x 2 cos ⁡ x 1 < 1 ∴ 0 ≤ ( ∗ ) < 1 , ( ∗ ) = 0 ⟺ x 1 = 0 ∴ tan ⁡ x 1 < tan ⁡ x 2 \begin{array}{l} \forall x_{1}, x_{2} \in\left[0, \cfrac{\pi}{2}\right) \\ \cfrac{\tan x_{1}}{\tan x_{2}}=\cfrac{\sin x_{1}}{\sin x_{2}} \cdot \cfrac{\cos x_{2}}{\cos x_{1}}(*) \\ \because 0 \leq x_{1}<x_{2}<\cfrac{\pi}{2} \\ \therefore 0 \leq \sin x_{1}<\sin x_{2}<1,0<\cos x_{2}<\cos x_{1} \leq 1 \\ \therefore 0 \leq \cfrac{\sin x_{1}}{\sin x_{2}}<1,0<\cfrac{\cos x_{2}}{\cos x_{1}}<1 \\ \therefore 0 \leq(*)<1,(*)=0 \Longleftrightarrow x_{1}=0 \\ \therefore \tan x_{1}<\tan x_{2} \end{array} x1,x2[0,2π)tanx2tanx1=sinx2sinx1cosx1cosx2()0x1<x2

  • 10
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值