名称:Jacobian matrix 雅可比矩阵
用法:jacobian(f,v)
描述:jacobian(f,v) computes the Jacobian matrix of f with respect to v. The (i,j) element of the result is
jacobian(f,v) 计算了 f 关于 v 的雅可比矩阵,其第(i,j )个元素为.
输入参数说明:
f — Scalar or vector function
symbolic expression | symbolic function | symbolic vector
标量或者向量函数,符号表达式、符号函数、符号向量等。
如果f是一个标量的话,f 的雅可比矩阵是 f 的梯度的转置。
v — Vector of variables with respect to which you compute Jacobian
symbolic variable | symbolic vector
要计算雅可比的变量向量,符号变量、符号向量
如果v 是一个标量,则结果等价于 diff(f,v) 的转置。
如果v 是空符号对象,比如sym([ ]),则结果返回空符号对象。syms x y z f=x^3+y^3+z^3; j=jacobian(f,[x,y,z]); j h=hessian(f,[x,y,z]); h 结果为 j = [ 3*x^2, 3*y^2, 3*z^2] h = [ 6*x, 0, 0] [ 0, 6*y, 0] [ 0, 0, 6*z]
matlab求jacobian矩阵和hession矩阵
于 2021-11-29 14:01:08 首次发布
本文介绍了在MATLAB中如何计算雅可比矩阵和海森矩阵。使用`jacobian`函数可以得到标量或向量函数关于变量的雅可比矩阵,而求解海森矩阵可以通过直接调用`hessian`函数,或者先计算雅可比矩阵和梯度后再进行求解。详细阐述了三种不同的计算方法。
摘要由CSDN通过智能技术生成