matlab求jacobian矩阵和hession矩阵

本文介绍了在MATLAB中如何计算雅可比矩阵和海森矩阵。使用`jacobian`函数可以得到标量或向量函数关于变量的雅可比矩阵,而求解海森矩阵可以通过直接调用`hessian`函数,或者先计算雅可比矩阵和梯度后再进行求解。详细阐述了三种不同的计算方法。
摘要由CSDN通过智能技术生成

名称:Jacobian matrix 雅可比矩阵
用法:jacobian(f,v)
描述:jacobian(f,v) computes the Jacobian matrix of f with respect to v. The (i,j) element of the result is 
     jacobian(f,v) 计算了 f 关于 v 的雅可比矩阵,其第(i,j )个元素为.


输入参数说明:
f — Scalar or vector function
    symbolic expression | symbolic function | symbolic vector
    标量或者向量函数,符号表达式、符号函数、符号向量等。 
    如果f是一个标量的话,f 的雅可比矩阵是 f 的梯度的转置。


v — Vector of variables with respect to which you compute Jacobian
    symbolic variable | symbolic vector
    要计算雅可比的变量向量,符号变量、符号向量
    如果v 是一个标量,则结果等价于 diff(f,v) 的转置。
    如果v 是空符号对象,比如sym([ ]),则结果返回空符号对象。

syms x y z
f=x^3+y^3+z^3;
j=jacobian(f,[x,y,z]);
j

h=hessian(f,[x,y,z]);

h

结果为

j =
 
[ 3*x^2, 3*y^2, 3*z^2]
 
 
h =
 
[ 6*x,   0,   0]
[   0, 6*y,   0]
[   0,   0, 6*z]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值