迭代数列的极限问题

迭代数列的极限问题

结论:设 x n {x_n} xn满足关系 x n + 1 = f ( x n ) , n ∈ N + x_{n+1}=f\left(x_{n}\right), n \in \mathbf{N}_{+} xn+1=f(xn),nN+,其中的函数f在区间I上单调,同时数列*{x_n}*的每一项都在区间I中,则只有两种可能:(1)当f为单调增加时, x n {x_n} xn为单调数列;(2)当f为单调减少时, x n {x_n} xn的两个子列 x 2 k − 1 {x_{2k-1}} x2k1 x 2 k {x_{2k}} x2k分别为单调数列,且具有相反的单调性。

证明:分别讨论命题中的两种情况。
(1)设 f ( x ) f(x) f(x)在区间I上单调增加,根据条件,有 x n ∈ I , n ∈ N + x_{n} \in I, n \in \mathbf{N}_{+} xnI,nN+,观察数列的前两项,如有 x 1 ⩽ x 2 = f ( x 1 ) x_{1} \leqslant x_{2}=f\left(x_{1}\right) x1x2=f(x1),则就有 x 1 ⩽ x 2 = f ( x 1 ) x_{1} \leqslant x_{2}=f\left(x_{1}\right) x1x2=f(x1),用数学归纳法可知,数列 x n {x_n} xn单调增加,完全类似地可以证明,在 x 1 ⩾ x 2 x_{1} \geqslant x_2 x1x2时,数列收敛, x n {x_n} xn单调减少。

(2)设 f ( x ) f(x) f(x)在区间I上单调减少,注意:复合函数 f ( f ( x ) ) f(f(x)) f(f(x))却是单调增加的,严格来说,只要 a , b ∈ I , a < b a, b \in I, a<b a,bI,a<b,而且 f ( a ) , f ( b ) ∈ I f(a), f(b) \in I f(a),f(b)I,就成立 f ( f ( a ) ) ⩽ f ( f ( b ) ) f(f(a)) \leqslant f(f(b)) f(f(a))f(f(b))

观察 x 1 x_1 x1 x 3 x_3 x3,如果 x 1 = x 3 x_{1}=x_{3} x1=x3,则子列 { x 2 k − 1 } \left\{x_{2 k-1}\right\} {x2k1}为常值数列,如成立 x 1 < x 3 x_1<x_3 x1<x3,从f单调减少就有 x 2 ⩾ x 4 x_{2} \geqslant x_{4} x2x4,然后推出 x 3 ⩽ x 5 x_{3} \leqslant x_{5} x3x5,以下的讨论已无困难,用数学归纳法可以证明这是子列 { x 2 k − 1 } \left\{x_{2 k-1}\right\} {x2k1}单调增加,由于函数f单调减少,从 x 2 k = f ( x 2 k − 1 ) , k ∈ N + x_{2 k}=f\left(x_{2 k-1}\right), k \in \mathbf{N}_{+} x2k=f(x2k1),kN+可知子列 { x 2 k } \left\{x_{2 k}\right\} {x2k}单调减少,对于 x 1 > x 3 x_{1}>x_{3} x1>x3的讨论完全类似,从略。

例1:设 a 1 = 2 , a n + 1 = 2 + a n , n ∈ N + a_{1}=\sqrt{2}, a_{n+1}=\sqrt{2+a_{n}}, n \in \mathbf{N}_{+} a1=2 ,an+1=2+an ,nN+,讨论数列 a n {a_n} an的敛散性,若收敛求出其极限。

解析:从
a 1 = 2 < 2 + 2 = a 2 a_{1}=\sqrt{2}<\sqrt{2+\sqrt{2}}=a_{2} a1=2 <2+2 =a2
以及
a n − 1 < a n ⟹ a n = 2 + a n − 1 < 2 + a n = a n + 1 a_{n-1}<a_{n} \Longrightarrow a_{n}=\sqrt{2+a_{n-1}}<\sqrt{2+a_{n}}=a_{n+1} an1<anan=2+an1 <2+an =an+1
可见数列是单调增加的,又从 a 1 < 2 a_{1}<2 a1<2
a n < 2 ⇒ a n + 1 = 2 + a n < 2 + 2 = 2 a_{n}<2 \Rightarrow a_{n+1}=\sqrt{2+a_{n}}<\sqrt{2+2}=2 an<2an+1=2+an <2+2 =2
可见数列以2为上界,因此它是收敛数列,记极限是a,在递推公式 a n + 1 = 2 + a n a_{n+1}=\sqrt{2+a_{n}} an+1=2+an 的两边令 n → ∞ n \rightarrow \infty n,于是就得到关于a的方程
a = 2 + a a=\sqrt{2+a} a=2+a
a > 0 a>0 a>0,该方程只有一个正解 a = 2 a=2 a=2,因此就是所要求的极限。
注解:这里介绍证明数列 a n {a_n} an有上界的另一种方法,它在处理 a n a_n an中出现 n n n重根式类似问题可能有用,利用
2 + 2 < 2 + 2 = 2 \sqrt{2+\sqrt{2}}<\sqrt{2+2}=2 2+2 <2+2 =2
就可以在 a n a_n an的表达式 2 + 2 + ⋯ + 2 \sqrt{2+\sqrt{2+\cdots+\sqrt{2}}} 2+2++2 中从最里面开始,从内到外将根号脱去,得到 a n < 2 a_n<2 an<2

例二
数列 b n {b_n} bn b 1 = 1 b_1=1 b1=1 b n + 1 = 1 + 1 b n ( n ∈ N + ) b_{n+1}=1+\frac{1}{b_{n}}\left(n \in \mathbf{N}_{+}\right) bn+1=1+bn1(nN+)生成,讨论 b n {b_n} bn的敛散性,若收敛则求出其极限。

解析:先假定数列 b n {b_n} bn收敛,记极限为b,从迭代所用的递推公式中令 n → ∞ n \rightarrow \infty n,就得到 b 2 − b − 1 = 0 b^{2}-b-1=0 b2b1=0,它有两个根: ( 1 ± 5 ) / 2 (1 \pm \sqrt{5}) / 2 (1±5 )/2
考虑数列 b n {b_n} bn中的项 b n b_{n} bn b n + 2 b_{n+2} bn+2的关系,可以从递推公式导出 b n + 2 = 2 − 1 / ( b n + 1 ) b_{n+2}=2-1 /\left(b_{n}+1\right) bn+2=21/(bn+1),由于上面求出的 b b b也满足等式 b = 2 − 1 / ( b + 1 ) b=2-1 /(b+1) b=21/(b+1),就有
b n + 2 − b = b n − b ( b n + 1 ) ( b + 1 ) b_{n+2}-b=\frac{b_{n}-b}{\left(b_{n}+1\right)(b+1)} bn+2b=(bn+1)(b+1)bnb
可见 b n − b b_{n}-b bnb b n + 2 − b b_{n+2}-b bn+2b总是同号的,计算其前几项,可见 { b 2 k − 1 } \left\{b_{2 k-1}\right\} {b2k1}严格单调增加, { b 2 k } \left\{b_{2 k}\right\} {b2k}严格单调减少,而且有
b 1 < b 3 < ⋯ < b < ⋯ < b 4 < b 2 b_{1}<b_{3}<\cdots<b<\cdots<b_{4}<b_{2} b1<b3<<b<<b4<b2
因此它们都是收敛数列,在它们共同的递推公式 b n + 2 = 2 − 1 b n + 1 b_{n+2}=2-\frac{1}{b_{n}+1} bn+2=2bn+11中令 n → ∞ n \rightarrow \infty n,可见它们的极限都是b,因此数列 { b n } \left\{b_{n}\right\} {bn}收敛于b。

例三 设参数 b > 4 , x 1 = 1 2 , x n + 1 = b x n ( 1 − x n ) , n ∈ N + b>4, x_{1}=\frac{1}{2}, x_{n+1}=b x_{n}\left(1-x_{n}\right), n \in \mathbf{N}_{+} b>4,x1=21,xn+1=bxn(1xn),nN+,证明: x n {x_n} xn发散。

证明 x 1 = 1 2 , x 2 = b 4 > 1 , x 3 < 0 x_{1}=\frac{1}{2}, x_{2}=\frac{b}{4}>1, x_{3}<0 x1=21,x2=4b>1,x3<0,由数学归纳法易知当 n ⩾ 3 n \geqslant 3 n3时都有 x n < 0 x_{n}<0 xn<0
n ⩾ 3 n \geqslant 3 n3
x n + 1 x n = b ( 1 − x n ) > b > 1 \frac{x_{n+1}}{x_{n}}=b\left(1-x_{n}\right)>b>1 xnxn+1=b(1xn)>b>1
x n + 1 < x n x_{n+1}<x_{n} xn+1<xn,又 x n < 0 , n ⩾ 3 x_{n}<0, n \geqslant 3 xn<0,n3,所以 x n x_n xn即使收敛也不会收敛于0,假设 x n x_n xn收敛,两边取极限约分得 lim ⁡ n → + ∞ x n = 1 − 1 / b > 0 \lim \limits_{n \rightarrow+\infty} x_{n}=1-1 / b>0 n+limxn=11/b>0与极限的保号性矛盾。

例四 x 0 = a , x n = 1 + b x n − 1 , n ∈ N + x_{0}=a, x_{n}=1+b x_{n-1}, n \in \mathbf{N}_{+} x0=a,xn=1+bxn1,nN+,试求处使该数列收敛的 a , b a,b a,b的所有值。

解析:当 b = 0 b=0 b=0时,显然 x n {x_n} xn收敛,当 b = 1 b=1 b=1 x n + 1 − x n = 1 x_{n+1}-x_{n}=1 xn+1xn=1,由等差数列的性质及其发散,当 b ≠ 0 b \neq 0 b=0 b ≠ 1 b \neq 1 b=1时,我们有
x n b n − x n − 1 b n − 1 = 1 b n \frac{x_{n}}{b^{n}}-\frac{x_{n-1}}{b^{n-1}}=\frac{1}{b^{n}} bnxnbn1xn1=bn1
累计化简得
x n = ( a + 1 b − 1 ) b n − 1 b − 1 x_{n}=\left(a+\frac{1}{b-1}\right) b^{n}-\frac{1}{b-1} xn=(a+b11)bnb11
容易看出当 a + 1 b − 1 = 0 a+\frac{1}{b-1}=0 a+b11=0 b ∈ ( − 1 , 0 ) ∪ ( 0 , 1 ) b \in(-1,0) \cup(0,1) b(1,0)(0,1)时, x n {x_n} xn收敛。
综上所述,当 a + 1 b − 1 = 0 a+\frac{1}{b-1}=0 a+b11=0 ∣ b ∣ < 1 |b|<1 b<1时, x n {x_n} xn收敛。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值