迭代数列的极限问题
结论:设 x n {x_n} xn满足关系 x n + 1 = f ( x n ) , n ∈ N + x_{n+1}=f\left(x_{n}\right), n \in \mathbf{N}_{+} xn+1=f(xn),n∈N+,其中的函数f在区间I上单调,同时数列*{x_n}*的每一项都在区间I中,则只有两种可能:(1)当f为单调增加时, x n {x_n} xn为单调数列;(2)当f为单调减少时, x n {x_n} xn的两个子列 x 2 k − 1 {x_{2k-1}} x2k−1和 x 2 k {x_{2k}} x2k分别为单调数列,且具有相反的单调性。
证明:分别讨论命题中的两种情况。
(1)设
f
(
x
)
f(x)
f(x)在区间I上单调增加,根据条件,有
x
n
∈
I
,
n
∈
N
+
x_{n} \in I, n \in \mathbf{N}_{+}
xn∈I,n∈N+,观察数列的前两项,如有
x
1
⩽
x
2
=
f
(
x
1
)
x_{1} \leqslant x_{2}=f\left(x_{1}\right)
x1⩽x2=f(x1),则就有
x
1
⩽
x
2
=
f
(
x
1
)
x_{1} \leqslant x_{2}=f\left(x_{1}\right)
x1⩽x2=f(x1),用数学归纳法可知,数列
x
n
{x_n}
xn单调增加,完全类似地可以证明,在
x
1
⩾
x
2
x_{1} \geqslant x_2
x1⩾x2时,数列收敛,
x
n
{x_n}
xn单调减少。
(2)设 f ( x ) f(x) f(x)在区间I上单调减少,注意:复合函数 f ( f ( x ) ) f(f(x)) f(f(x))却是单调增加的,严格来说,只要 a , b ∈ I , a < b a, b \in I, a<b a,b∈I,a<b,而且 f ( a ) , f ( b ) ∈ I f(a), f(b) \in I f(a),f(b)∈I,就成立 f ( f ( a ) ) ⩽ f ( f ( b ) ) f(f(a)) \leqslant f(f(b)) f(f(a))⩽f(f(b))
观察 x 1 x_1 x1与 x 3 x_3 x3,如果 x 1 = x 3 x_{1}=x_{3} x1=x3,则子列 { x 2 k − 1 } \left\{x_{2 k-1}\right\} {x2k−1}为常值数列,如成立 x 1 < x 3 x_1<x_3 x1<x3,从f单调减少就有 x 2 ⩾ x 4 x_{2} \geqslant x_{4} x2⩾x4,然后推出 x 3 ⩽ x 5 x_{3} \leqslant x_{5} x3⩽x5,以下的讨论已无困难,用数学归纳法可以证明这是子列 { x 2 k − 1 } \left\{x_{2 k-1}\right\} {x2k−1}单调增加,由于函数f单调减少,从 x 2 k = f ( x 2 k − 1 ) , k ∈ N + x_{2 k}=f\left(x_{2 k-1}\right), k \in \mathbf{N}_{+} x2k=f(x2k−1),k∈N+可知子列 { x 2 k } \left\{x_{2 k}\right\} {x2k}单调减少,对于 x 1 > x 3 x_{1}>x_{3} x1>x3的讨论完全类似,从略。
例1:设 a 1 = 2 , a n + 1 = 2 + a n , n ∈ N + a_{1}=\sqrt{2}, a_{n+1}=\sqrt{2+a_{n}}, n \in \mathbf{N}_{+} a1=2,an+1=2+an,n∈N+,讨论数列 a n {a_n} an的敛散性,若收敛求出其极限。
解析:从
a
1
=
2
<
2
+
2
=
a
2
a_{1}=\sqrt{2}<\sqrt{2+\sqrt{2}}=a_{2}
a1=2<2+2=a2
以及
a
n
−
1
<
a
n
⟹
a
n
=
2
+
a
n
−
1
<
2
+
a
n
=
a
n
+
1
a_{n-1}<a_{n} \Longrightarrow a_{n}=\sqrt{2+a_{n-1}}<\sqrt{2+a_{n}}=a_{n+1}
an−1<an⟹an=2+an−1<2+an=an+1
可见数列是单调增加的,又从
a
1
<
2
a_{1}<2
a1<2和
a
n
<
2
⇒
a
n
+
1
=
2
+
a
n
<
2
+
2
=
2
a_{n}<2 \Rightarrow a_{n+1}=\sqrt{2+a_{n}}<\sqrt{2+2}=2
an<2⇒an+1=2+an<2+2=2
可见数列以2为上界,因此它是收敛数列,记极限是a,在递推公式
a
n
+
1
=
2
+
a
n
a_{n+1}=\sqrt{2+a_{n}}
an+1=2+an的两边令
n
→
∞
n \rightarrow \infty
n→∞,于是就得到关于a的方程
a
=
2
+
a
a=\sqrt{2+a}
a=2+a
因
a
>
0
a>0
a>0,该方程只有一个正解
a
=
2
a=2
a=2,因此就是所要求的极限。
注解:这里介绍证明数列
a
n
{a_n}
an有上界的另一种方法,它在处理
a
n
a_n
an中出现
n
n
n重根式类似问题可能有用,利用
2
+
2
<
2
+
2
=
2
\sqrt{2+\sqrt{2}}<\sqrt{2+2}=2
2+2<2+2=2
就可以在
a
n
a_n
an的表达式
2
+
2
+
⋯
+
2
\sqrt{2+\sqrt{2+\cdots+\sqrt{2}}}
2+2+⋯+2中从最里面开始,从内到外将根号脱去,得到
a
n
<
2
a_n<2
an<2。
例二:
数列
b
n
{b_n}
bn由
b
1
=
1
b_1=1
b1=1和
b
n
+
1
=
1
+
1
b
n
(
n
∈
N
+
)
b_{n+1}=1+\frac{1}{b_{n}}\left(n \in \mathbf{N}_{+}\right)
bn+1=1+bn1(n∈N+)生成,讨论
b
n
{b_n}
bn的敛散性,若收敛则求出其极限。
解析:先假定数列
b
n
{b_n}
bn收敛,记极限为b,从迭代所用的递推公式中令
n
→
∞
n \rightarrow \infty
n→∞,就得到
b
2
−
b
−
1
=
0
b^{2}-b-1=0
b2−b−1=0,它有两个根:
(
1
±
5
)
/
2
(1 \pm \sqrt{5}) / 2
(1±5)/2
考虑数列
b
n
{b_n}
bn中的项
b
n
b_{n}
bn和
b
n
+
2
b_{n+2}
bn+2的关系,可以从递推公式导出
b
n
+
2
=
2
−
1
/
(
b
n
+
1
)
b_{n+2}=2-1 /\left(b_{n}+1\right)
bn+2=2−1/(bn+1),由于上面求出的
b
b
b也满足等式
b
=
2
−
1
/
(
b
+
1
)
b=2-1 /(b+1)
b=2−1/(b+1),就有
b
n
+
2
−
b
=
b
n
−
b
(
b
n
+
1
)
(
b
+
1
)
b_{n+2}-b=\frac{b_{n}-b}{\left(b_{n}+1\right)(b+1)}
bn+2−b=(bn+1)(b+1)bn−b
可见
b
n
−
b
b_{n}-b
bn−b和
b
n
+
2
−
b
b_{n+2}-b
bn+2−b总是同号的,计算其前几项,可见
{
b
2
k
−
1
}
\left\{b_{2 k-1}\right\}
{b2k−1}严格单调增加,
{
b
2
k
}
\left\{b_{2 k}\right\}
{b2k}严格单调减少,而且有
b
1
<
b
3
<
⋯
<
b
<
⋯
<
b
4
<
b
2
b_{1}<b_{3}<\cdots<b<\cdots<b_{4}<b_{2}
b1<b3<⋯<b<⋯<b4<b2
因此它们都是收敛数列,在它们共同的递推公式
b
n
+
2
=
2
−
1
b
n
+
1
b_{n+2}=2-\frac{1}{b_{n}+1}
bn+2=2−bn+11中令
n
→
∞
n \rightarrow \infty
n→∞,可见它们的极限都是b,因此数列
{
b
n
}
\left\{b_{n}\right\}
{bn}收敛于b。
例三 设参数 b > 4 , x 1 = 1 2 , x n + 1 = b x n ( 1 − x n ) , n ∈ N + b>4, x_{1}=\frac{1}{2}, x_{n+1}=b x_{n}\left(1-x_{n}\right), n \in \mathbf{N}_{+} b>4,x1=21,xn+1=bxn(1−xn),n∈N+,证明: x n {x_n} xn发散。
证明:
x
1
=
1
2
,
x
2
=
b
4
>
1
,
x
3
<
0
x_{1}=\frac{1}{2}, x_{2}=\frac{b}{4}>1, x_{3}<0
x1=21,x2=4b>1,x3<0,由数学归纳法易知当
n
⩾
3
n \geqslant 3
n⩾3时都有
x
n
<
0
x_{n}<0
xn<0
当
n
⩾
3
n \geqslant 3
n⩾3时
x
n
+
1
x
n
=
b
(
1
−
x
n
)
>
b
>
1
\frac{x_{n+1}}{x_{n}}=b\left(1-x_{n}\right)>b>1
xnxn+1=b(1−xn)>b>1
即
x
n
+
1
<
x
n
x_{n+1}<x_{n}
xn+1<xn,又
x
n
<
0
,
n
⩾
3
x_{n}<0, n \geqslant 3
xn<0,n⩾3,所以
x
n
x_n
xn即使收敛也不会收敛于0,假设
x
n
x_n
xn收敛,两边取极限约分得
lim
n
→
+
∞
x
n
=
1
−
1
/
b
>
0
\lim \limits_{n \rightarrow+\infty} x_{n}=1-1 / b>0
n→+∞limxn=1−1/b>0与极限的保号性矛盾。
例四 设 x 0 = a , x n = 1 + b x n − 1 , n ∈ N + x_{0}=a, x_{n}=1+b x_{n-1}, n \in \mathbf{N}_{+} x0=a,xn=1+bxn−1,n∈N+,试求处使该数列收敛的 a , b a,b a,b的所有值。
解析:当
b
=
0
b=0
b=0时,显然
x
n
{x_n}
xn收敛,当
b
=
1
b=1
b=1时
x
n
+
1
−
x
n
=
1
x_{n+1}-x_{n}=1
xn+1−xn=1,由等差数列的性质及其发散,当
b
≠
0
b \neq 0
b=0且
b
≠
1
b \neq 1
b=1时,我们有
x
n
b
n
−
x
n
−
1
b
n
−
1
=
1
b
n
\frac{x_{n}}{b^{n}}-\frac{x_{n-1}}{b^{n-1}}=\frac{1}{b^{n}}
bnxn−bn−1xn−1=bn1
累计化简得
x
n
=
(
a
+
1
b
−
1
)
b
n
−
1
b
−
1
x_{n}=\left(a+\frac{1}{b-1}\right) b^{n}-\frac{1}{b-1}
xn=(a+b−11)bn−b−11
容易看出当
a
+
1
b
−
1
=
0
a+\frac{1}{b-1}=0
a+b−11=0或
b
∈
(
−
1
,
0
)
∪
(
0
,
1
)
b \in(-1,0) \cup(0,1)
b∈(−1,0)∪(0,1)时,
x
n
{x_n}
xn收敛。
综上所述,当
a
+
1
b
−
1
=
0
a+\frac{1}{b-1}=0
a+b−11=0或
∣
b
∣
<
1
|b|<1
∣b∣<1时,
x
n
{x_n}
xn收敛。