一类和式极限计算公式的导出

题1:求极限 lim ⁡ n → ∞ n ( π 4 − A n ) , A n = n n 2 + 1 + n n 2 + 2 + ⋯ + n n 2 + n \lim \limits_{n \rightarrow \infty} n\left(\frac{\pi}{4}-A_{n}\right), A_{n}=\frac{n}{n^{2}+1}+\frac{n}{n^{2}+2}+\cdots+\frac{n}{n^{2}+n} nlimn(4πAn),An=n2+1n+n2+2n++n2+nn

题2:求极限 lim ⁡ n → ∞ n 2 ( 1 − B n ) \lim \limits_{n \rightarrow \infty} n^{2}\left(1-B_{n}\right) nlimn2(1Bn),其中 B n = π 2 n ∑ k = 1 n sin ⁡ ( 2 k − 1 ) π 4 n B_{n}=\frac{\pi}{2 n} \sum_{k=1}^{n} \sin \frac{(2 k-1) \pi}{4 n} Bn=2nπk=1nsin4n(2k1)π

这两个题目是下述两个题目的特殊情况,

题三:设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可导, f ′ ( x ) f^{\prime}(x) f(x) [ a , b ] [a,b] [a,b]上可积, ∀ n ∈ N \forall n \in \mathbb{N} nN,证明
lim ⁡ n → ∞ n P n = b − a 2 [ f ( b ) − f ( a ) ] \lim \limits_{n \rightarrow \infty} n P_{n}=\frac{b-a}{2}[f(b)-f(a)] nlimnPn=2ba[f(b)f(a)]

题四:设 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上二次可微, f ′ ′ ( x ) f^{\prime \prime}(x) f(x) [ a , b ] [a,b] [a,b]上可积, ∀ n ∈ N \forall n \in \mathbb{N} nN,证明
lim ⁡ n → ∞ n 2 Q n = ( b − a ) 2 24 [ f ′ ( b ) − f ′ ( a ) ] \lim \limits_{n \rightarrow \infty} n^{2} Q_{n}=\frac{(b-a)^{2}}{24}\left[f^{\prime}(b)-f^{\prime}(a)\right] nlimn2Qn=24(ba)2[f(b)f(a)]
其中
Q n = ∫ a b f ( x ) d x − b − a n ∑ i = 1 n f ( a + ( 2 i − 1 ) b − a n ) Q_{n}=\int_{a}^{b} f(x) \mathrm{d} x-\frac{b-a}{n} \sum_{i=1}^{n} f\left(a+(2 i-1) \frac{b-a}{n}\right) Qn=abf(x)dxnbai=1nf(a+(2i1)nba)

x i = a + i b − a n x_{i}=a+i \frac{b-a}{n} xi=a+inba,则 Δ x i = x i − x i − 1 = b − a n \Delta x_{i}=x_{i}-x_{i-1}=\frac{b-a}{n} Δxi=xixi1=nba ∀ η i ∈ [ x i − 1 , x i ] ⊂ [ a , b ] \forall \eta_{i} \in\left[x_{i-1}, x_{i}\right] \subset[a, b] ηi[xi1,xi][a,b],考虑变限积分函数 F ( x ) = ∫ a x f ( t ) d t F(x)=\int_{a}^{x} f(t) \mathrm{d} t F(x)=axf(t)dt,若 F ( x ) F(x) F(x)满足Taylor定理得条件,则存在 ξ i \xi_i ξi介于 x x x η i \eta_i ηi之间,使得
F ( x ) = F ( η i ) + F ′ ( η i ) ( x − η i ) + ⋯ + F ( k ) ( η i ) k ! ( x − η i ) k + F ( k + 1 ) ( ξ i ) ( k + 1 ) ! ( x − η i ) k + 1 \begin{array}{c} F(x)=F\left(\eta_{i}\right)+F^{\prime}\left(\eta_{i}\right)\left(x-\eta_{i}\right)+\cdots+ \\ \frac{F^{(k)}\left(\eta_{i}\right)}{k !}\left(x-\eta_{i}\right)^{k}+\frac{F^{(k+1)}\left(\xi_{i}\right)}{(k+1) !}\left(x-\eta_{i}\right)^{k+1} \end{array} F(x)=F(ηi)+F(ηi)(xηi)++k!F(k)(ηi)(xηi)k+(k+1)!F(k+1)(ξi)(xηi)k+1
(i)解法一:若 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上可导, f ′ ( x ) f^{\prime}(x) f(x) [ a , b ] [a,b] [a,b]上可积,此时 F ( x ) F(x) F(x)有二阶导数,故
F ( x ) = F ( η i ) + F ′ ( η i ) ( x − η i ) + F ′ ′ ( ξ i ) 2 ! ( x − η i ) 2 F(x)=F\left(\eta_{i}\right)+F^{\prime}\left(\eta_{i}\right)\left(x-\eta_{i}\right)+\frac{F^{\prime \prime}\left(\xi_{i}\right)}{2 !}\left(x-\eta_{i}\right)^{2} F(x)=F(ηi)+F(ηi)(xηi)+2!F(ξi)(xηi)2
η i = x i , x = x i − 1 \eta_{i}=x_{i}, x=x_{i-1} ηi=xi,x=xi1,带入上式,注意到 x − η i = − b − a n x-\eta_{i}=-\frac{b-a}{n} xηi=nba以及 F ′ ( x ) = f ( x ) , F ′ ′ ( x ) = f ′ ( x ) F^{\prime}(x)=f(x), F^{\prime \prime}(x)=f^{\prime}(x) F(x)=f(x),F(x)=f(x),有
F ( x i − 1 ) = F ( x i ) + f ( x i ) ( − b − a n ) + f ′ ( ξ i ) 2 ! ( − b − a n ) 2 ξ i ∈ [ x i − 1 , x i ] \begin{array}{c} F\left(x_{i-1}\right)=F\left(x_{i}\right)+f\left(x_{i}\right)\left(-\frac{b-a}{n}\right)+\frac{f^{\prime}\left(\xi_{i}\right)}{2 !}\left(-\frac{b-a}{n}\right)^{2} \\ \xi_{i} \in\left[x_{i-1}, x_{i}\right] \end{array} F(xi1)=F(xi)+f(xi)(nba)+2!f(ξi)(nba)2ξi[xi1,xi]
再注意到
∫ a b f ( x ) d x = ∑ i = 1 n [ ∫ a x i f ( t ) d t − ∫ a x i − 1 f ( t ) d t ] = ∑ i = 1 n [ F ( x i ) − F ( x i − 1 ) ] \begin{aligned} &\int_{a}^{b} f(x) \mathrm{d} x=\sum_{i=1}^{n}\left[\int_{a}^{x_{i}} f(t) \mathrm{d} t-\int_{a}^{x_{i-1}} f(t) \mathrm{d} t\right]=\\ &\sum_{i=1}^{n}\left[F\left(x_{i}\right)-F\left(x_{i-1}\right)\right] \end{aligned} abf(x)dx=i=1n[axif(t)dtaxi1f(t)dt]=i=1n[F(xi)F(xi1)]
由上式直接计算可得
P n = ∑ i = 1 n f ( a + i b − a n ) ( b − a n ) − ∫ a b f ( x ) d x = ∑ i = 1 n [ f ( x i ) ( b − a n ) − F ( x i ) + F ( x i − 1 ) ] = ∑ i = 1 n f ′ ( ξ i ) 2 ! ( − b − a n ) 2 = ( b − a 2 n ) ∑ i = 1 n f ′ ( ξ i ) Δ x i \begin{aligned} P_{n} &=\sum_{i=1}^{n} f\left(a+i \frac{b-a}{n}\right)\left(\frac{b-a}{n}\right)-\int_{a}^{b} f(x) \mathrm{d} x=\\ & \sum_{i=1}^{n}\left[f\left(x_{i}\right)\left(\frac{b-a}{n}\right)-F\left(x_{i}\right)+F\left(x_{i-1}\right)\right]=\\ &\sum_{i=1}^{n} \frac{f^{\prime}\left(\xi_{i}\right)}{2 !}\left(-\frac{b-a}{n}\right)^{2} =\left(\frac{b-a}{2 n}\right) \sum_{i=1}^{n} f^{\prime}\left(\xi_{i}\right) \Delta x_{i} \end{aligned} Pn=i=1nf(a+inba)(nba)abf(x)dx=i=1n[f(xi)(nba)F(xi)+F(xi1)]=i=1n2!f(ξi)(nba)2=(2nba)i=1nf(ξi)Δxi

lim ⁡ n → ∞ n P n = b − a 2 lim ⁡ n → ∞ ( ∑ i = 1 n f ′ ( ξ i ) Δ x i ) = b − a 2 ∫ a b f ′ ( x ) d x = b − a 2 [ f ( b ) − f ( a ) ] \begin{array}{c} \lim \limits_{n \rightarrow \infty} n P_{n}=\frac{b-a}{2} \lim \limits_{n \rightarrow \infty}\left(\sum_{i=1}^{n} f^{\prime}\left(\xi_{i}\right) \Delta x_{i}\right)= \\ \frac{b-a}{2} \int_{a}^{b} f^{\prime}(x) \mathrm{d} x=\frac{b-a}{2}[f(b)-f(a)] \end{array} nlimnPn=2banlim(i=1nf(ξi)Δxi)=2baabf(x)dx=2ba[f(b)f(a)]

解法二:(转化为 f ′ ( x ) f^{\prime}(x) f(x)的积分和)
x i = a + i b − a n x_{i}=a+i \frac{b-a}{n} xi=a+inba,则
n A n = n ( ∑ i = 1 n f ( x i ) b − a n − ∑ i = 1 n ∫ x i − 1 x i f ( x ) d x ) = n ∑ i = 1 n ∫ x i − 1 x i ( f ( x i ) − f ( x ) ) d x = n ∑ i = 1 n ∫ x i − 1 x i f ′ ( η i ) ( x i − x ) d x ( η i ∈ ( x i − 1 , x i ) ) \begin{aligned} n A_{n} &=n\left(\sum_{i=1}^{n} f\left(x_{i}\right) \frac{b-a}{n}-\sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f(x) \mathrm{d} x\right) \\ &=n \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}}\left(f\left(x_{i}\right)-f(x)\right) \mathrm{d} x \\ &=n \sum_{i=1}^{n} \int_{x_{i-1}}^{x_{i}} f^{\prime}\left(\eta_{i}\right)\left(x_{i}-x\right) \mathrm{d} x \quad\left(\eta_{i} \in\left(x_{i-1}, x_{i}\right)\right) \end{aligned} nAn=n(i=1nf(xi)nbai=1nxi1xif(x)dx)=ni=1nxi1xi(f(xi)f(x))dx=ni=1nxi1xif(ηi)(xix)dx(ηi(xi1,xi))
因为 ( x i − x ) (x_i-x) (xix)不变号,导函数具有介值性,因此利用积分第一中值定理,不难知道: ∃ ξ i ∈ [ x i − 1 , x i ] \exists \xi_{i} \in\left[x_{i-1}, x_{i}\right] ξi[xi1,xi],使得
∫ x i − 1 x i f ′ ( η i ) ( x i − x ) d x = f ′ ( ε i ) ∫ x i − 1 x i ( x i − x ) d x \int_{x_{i-1}}^{x_{i}} f^{\prime}\left(\eta_{i}\right)\left(x_{i}-x\right) \mathrm{d} x=f^{\prime}\left(\varepsilon_{i}\right) \int_{x_{i-1}}^{x_{i}}\left(x_{i}-x\right) \mathrm{d} x xi1xif(ηi)(xix)dx=f(εi)xi1xi(xix)dx
于是
n A n = n ∑ i = 1 n f ′ ( ξ i ) ∫ x i − 1 x i ( x i − x ) d x = n 2 ∑ i = 1 n f ′ ( ξ i ) ( x i − x i − 1 ) 2 = n 2 ⋅ b − a n ∑ i = 1 n f ′ ( ξ i ) ( x i − x i − 1 ) \begin{aligned} n A_{n} &=n \sum_{i=1}^{n} f^{\prime}\left(\xi_{i}\right) \int_{x_{i-1}}^{x_{i}}\left(x_{i}-x\right) \mathrm{d} x \\ &=\frac{n}{2} \sum_{i=1}^{n} f^{\prime}\left(\xi_{i}\right)\left(x_{i}-x_{i-1}\right)^{2} \\ &=\frac{n}{2} \cdot \frac{b-a}{n} \sum_{i=1}^{n} f^{\prime}\left(\xi_{i}\right)\left(x_{i}-x_{i-1}\right) \end{aligned} nAn=ni=1nf(ξi)xi1xi(xix)dx=2ni=1nf(ξi)(xixi1)2=2nnbai=1nf(ξi)(xixi1)

→ b − a 2 ∫ a b f ′ ( x ) d x = b − a 2 ( f ( b ) − f ( a ) ) \begin{array}{l} \rightarrow \frac{b-a}{2} \int_{a}^{b} f^{\prime}(x) \mathrm{d} x \\ =\frac{b-a}{2}(f(b)-f(a)) \end{array} 2baabf(x)dx=2ba(f(b)f(a))

(ii)若 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b]上二次可微, f ′ ′ ( x ) f^{\prime \prime}(x) f(x) [ a , b ] [a,b] [a,b]上可积,此时 F ( x ) F(x) F(x)有三阶导数,故
F ( x ) = F ( η i ) + F ′ ( η i ) ( x − η i ) + F ′ ′ ( η i ) 2 ! ( x − η i ) 2 + F ′ ′ ′ ( ξ i ) 3 ! ( x − η i ) 3 \begin{array}{c} F(x)=F\left(\eta_{i}\right)+F^{\prime}\left(\eta_{i}\right)\left(x-\eta_{i}\right)+ \\ \frac{F^{\prime \prime}\left(\eta_{i}\right)}{2 !}\left(x-\eta_{i}\right)^{2}+\frac{F^{\prime \prime \prime}\left(\xi_{i}\right)}{3 !}\left(x-\eta_{i}\right)^{3} \end{array} F(x)=F(ηi)+F(ηi)(xηi)+2!F(ηi)(xηi)2+3!F(ξi)(xηi)3
分别取 η i = x i − 1 + x i 2 , x = x i − 1 , x i \eta_{i}=\frac{x_{i-1}+x_{i}}{2}, x=x_{i-1}, x_{i} ηi=2xi1+xi,x=xi1,xi代入上式,有
F ( x i − 1 ) = F ( x i − 1 + x i 2 ) + f ( x i − 1 + x i 2 ) ( − b − a 2 n ) 1 2 ! f ′ ( x i − 1 + x i 2 ) ( − b − a 2 n ) 2 + f ′ ′ ( ξ i ) 3 ! ( − b − a 2 n ) 3 F ( x i ) = F ( x i − 1 + x i 2 ) + f ( x i − 1 + x i 2 ) ( b − a 2 n ) + 1 2 ! f ′ ( x i − 1 + x i 2 ) ( b − a 2 n ) 2 + f ′ ′ ( ζ i ) 3 ! ( b − a 2 n ) 3 \begin{array}{l} F\left(x_{i-1}\right)=F\left(\frac{x_{i-1}+x_{i}}{2}\right)+f\left(\frac{x_{i-1}+x_{i}}{2}\right)\left(-\frac{b-a}{2 n}\right) \\ \frac{1}{2 !} f^{\prime}\left(\frac{x_{i-1}+x_{i}}{2}\right)\left(-\frac{b-a}{2 n}\right)^{2}+\frac{f^{\prime \prime}\left(\xi_{i}\right)}{3 !}\left(-\frac{b-a}{2 n}\right)^{3} \\ \quad F\left(x_{i}\right)=F\left(\frac{x_{i-1}+x_{i}}{2}\right)+f\left(\frac{x_{i-1}+x_{i}}{2}\right)\left(\frac{b-a}{2 n}\right)+ \\ \quad \frac{1}{2 !} f^{\prime}\left(\frac{x_{i-1}+x_{i}}{2}\right)\left(\frac{b-a}{2 n}\right)^{2}+\frac{f^{\prime \prime}\left(\zeta_{i}\right)}{3 !}\left(\frac{b-a}{2 n}\right)^{3} \end{array} F(xi1)=F(2xi1+xi)+f(2xi1+xi)(2nba)2!1f(2xi1+xi)(2nba)2+3!f(ξi)(2nba)3F(xi)=F(2xi1+xi)+f(2xi1+xi)(2nba)+2!1f(2xi1+xi)(2nba)2+3!f(ζi)(2nba)3
其中 ξ i ∈ [ x i − 1 , x i − 1 + x i 2 ] , ζ i ∈ [ x i − 1 + x i 2 , x i ] \xi_{i} \in\left[x_{i-1}, \frac{x_{i-1}+x_{i}}{2}\right], \zeta_{i} \in\left[\frac{x_{i-1}+x_{i}}{2}, x_{i}\right] ξi[xi1,2xi1+xi],ζi[2xi1+xi,xi]
将上面两式相减得到
F ( x i ) − F ( x i − 1 ) = f ( x i − 1 + x i 2 ) ( b − a n ) + f ′ ′ ( ξ i ) + f ′ ′ ( ξ i ) 3 ! ( b − a 2 n ) 3 \begin{aligned} F\left(x_{i}\right)-F\left(x_{i-1}\right) &=f\left(\frac{x_{i-1}+x_{i}}{2}\right)\left(\frac{b-a}{n}\right)+\\ & \frac{f^{\prime \prime}\left(\xi_{i}\right)+f^{\prime \prime}\left(\xi_{i}\right)}{3 !}\left(\frac{b-a}{2 n}\right)^{3} \end{aligned} F(xi)F(xi1)=f(2xi1+xi)(nba)+3!f(ξi)+f(ξi)(2nba)3
由上式直接计算可知
Q n = ∫ a b f ( x ) d x − b − a n ∑ i = 1 n f ( a + ( 2 i − 1 ) b − a n ) = ∑ i = 1 n [ F ( x i ) − F ( x i − 1 ) − b − a n f ( x i − 1 + x i 2 ) ] = ∑ i = 1 n f ′ ′ ( ζ i ) + f ′ ′ ( ξ i ) 3 ! ( b − a 2 n ) 3 = ( b − a ) 2 3 ! 2 3 n 2 ∑ i = 1 n [ f ′ ′ ( ζ i ) + f ′ ′ ( ξ i ) ] Δ x i \begin{aligned} Q_{n} &=\int_{a}^{b} f(x) \mathrm{d} x-\frac{b-a}{n} \sum_{i=1}^{n} f\left(a+(2 i-1) \frac{b-a}{n}\right) \\ &=\sum_{i=1}^{n}\left[F\left(x_{i}\right)-F\left(x_{i-1}\right)-\frac{b-a}{n} f\left(\frac{x_{i-1}+x_{i}}{2}\right)\right] \\ &=\sum_{i=1}^{n} \frac{f^{\prime \prime}\left(\zeta_{i}\right)+f^{\prime \prime}\left(\xi_{i}\right)}{3 !}\left(\frac{b-a}{2 n}\right)^{3} \\ &=\frac{(b-a)^{2}}{3 ! 2^{3} n^{2}} \sum_{i=1}^{n}\left[f^{\prime \prime}\left(\zeta_{i}\right)+f^{\prime \prime}\left(\xi_{i}\right)\right] \Delta x_{i} \end{aligned} Qn=abf(x)dxnbai=1nf(a+(2i1)nba)=i=1n[F(xi)F(xi1)nbaf(2xi1+xi)]=i=1n3!f(ζi)+f(ξi)(2nba)3=3!23n2(ba)2i=1n[f(ζi)+f(ξi)]Δxi

lim ⁡ n → ∞ n 2 Q n = ( b − a ) 2 48 lim ⁡ n → ∞ ∑ i = 1 n [ f ′ ′ ( ζ i ) + f ′ ′ ( ξ i ) ] Δ x i = ( b − a ) 2 24 ∫ a b f ′ ′ ( x ) d x = ( b − a ) 2 24 [ f ′ ( b ) − f ′ ( a ) ] \begin{aligned} \lim _{n \rightarrow \infty} n^{2} Q_{n} &=\frac{(b-a)^{2}}{48} \lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left[f^{\prime \prime}\left(\zeta_{i}\right)+f^{\prime \prime}\left(\xi_{i}\right)\right] \Delta x_{i} \\ &=\frac{(b-a)^{2}}{24} \int_{a}^{b} f^{\prime \prime}(x) \mathrm{d} x \\ &=\frac{(b-a)^{2}}{24}\left[f^{\prime}(b)-f^{\prime}(a)\right] \end{aligned} nlimn2Qn=48(ba)2nlimi=1n[f(ζi)+f(ξi)]Δxi=24(ba)2abf(x)dx=24(ba)2[f(b)f(a)]

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值