函数的右导数与导函数的右极限的关系

函数的右导数与导函数的右极限的关系

f + ′ ( x 0 ) f^{\prime}_+\left(x_{0}\right) f+(x0)表示函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处的右导数,即 f + ′ ( x 0 ) = lim ⁡ x → x 0 + f ( x ) − f ( x 0 ) x − x 0 f^{\prime}_+\left(x_{0}\right)=\lim \limits_{x \rightarrow x_{0}^{+}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} f+(x0)=xx0+limxx0f(x)f(x0),用 f ′ ( x 0 + ) f^{\prime}\left(x_{0}^{+}\right) f(x0+)表示导函数 f ′ ( x ) f^{\prime}(x) f(x)在点 x 0 x_0 x0处的右极限,即 f ′ ( x 0 + ) = lim ⁡ x → x 0 + f ′ ( x ) f^{\prime}\left(x_{0}^{+}\right)=\lim \limits_{x \rightarrow x_{0}^{+}} f^{\prime}(x) f(x0+)=xx0+limf(x),这是两个完全不同的概念,其中 f ′ ( x 0 + ) f^{\prime}\left(x_{0}^{+}\right) f(x0+)还蕴含 f ( x ) f(x) f(x)在点 x 0 x_0 x0的右邻域 ( x 0 , x 0 + δ ) \left(x_{0}, x_{0}+\delta\right) (x0,x0+δ)内每一点可导。
下面举两个例子来说明他们两个不一定相等
例一:设函数 f ( x ) = { 2 3 x 3 , x ⩾ 1 x 2 , x < 1 f(x)=\left\{\begin{array}{ll}\frac{2}{3} x^{3}, & x \geqslant 1 \\ x^{2}, & x<1\end{array}\right. f(x)={32x3,x2,x1x<1,求 f ′ ( x ) f^{\prime}(x) f(x)
错误解法:当 x > 1 x>1 x>1时,有 f ′ ( x ) = 2 x 2 f^{\prime}(x)=2 x^{2} f(x)=2x2;当 x < 1 x<1 x<1时,有 f ′ ( x ) = 2 x f^{\prime}(x)=2 x f(x)=2x,又因为
f + ′ ( 1 ) = lim ⁡ x → 1 + ( 2 x 2 ) = 2 , f − ′ ( 1 ) = lim ⁡ x → 1 − ( 2 x ) = 2 f^{\prime}_+(1)=\lim _{x \rightarrow 1^{+}}\left(2 x^{2}\right)=2, \quad f^{\prime}_-(1)=\lim _{x \rightarrow 1^{-}}(2 x)=2 f+(1)=x1+lim(2x2)=2,f(1)=x1lim(2x)=2
f ′ ( 1 ) = 2 f^{\prime}(1)=2 f(1)=2,所以
f ′ ( x ) = { 2 x 2 , x ⩾ 1 2 x , x < 1 f^{\prime}(x)=\left\{\begin{array}{ll} 2 x^{2}, & x \geqslant 1 \\ 2 x, & x<1 \end{array}\right. f(x)={2x2,2x,x1x<1
错误解法的问题出在 f ( x ) f(x) f(x)在分界点 x = 1 x=1 x=1处不连续,当然 f ( x ) f(x) f(x) x = 1 x=1 x=1处不可导,事实上
f − ′ ( 1 ) = lim ⁡ x → 1 f ( x ) − f ( 1 ) x − 1 = lim ⁡ x → 1 2 x − 2 3 x − 1 f^{\prime}_-(1)=\lim \limits_{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=\lim \limits_{x \rightarrow 1} \frac{2 x-\frac{2}{3}}{x-1} f(1)=x1limx1f(x)f(1)=x1limx12x32
不存在,正确答案应该是
f ′ ( x ) = { 2 x 2 , x > 1 2 x , x < 1 f^{\prime}(x)=\left\{\begin{array}{ll}2 x^{2}, & x>1 \\ 2 x, & x<1\end{array}\right. f(x)={2x2,2x,x>1x<1 f ( x ) f(x) f(x) x = 1 x=1 x=1处不可导

例二:设 g ( x ) = { x 2 sin ⁡ 1 x , x ≠ 0 0 , x = 0 g(x)=\left\{\begin{array}{ll}x^{2} \sin \frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{array}\right. g(x)={x2sinx1,0,x=0x=0,证明 g + ′ ( 0 ) = 0 g^{\prime}_+(0)=0 g+(0)=0,而 g ′ ( 0 + ) g^{\prime}\left(0^{+}\right) g(0+)不存在
证明
g + ′ ( 0 ) = lim ⁡ x → 0 + g ( x ) − g ( 0 ) x = lim ⁡ x → 0 + x sin ⁡ 1 x = 0 g^{\prime}_+(0)=\lim _{x \rightarrow 0^{+}} \frac{g(x)-g(0)}{x}=\lim _{x \rightarrow 0^{+}} x \sin \frac{1}{x}=0 g+(0)=x0+limxg(x)g(0)=x0+limxsinx1=0
x ≠ 0 x \neq 0 x=0时, g ′ ( x ) = 2 x sin ⁡ 1 x − cos ⁡ 1 x , g ′ ( 0 + ) = lim ⁡ x → 0 + ( 2 x sin ⁡ 1 x − cos ⁡ 1 x ) g^{\prime}(x)=2 x \sin \frac{1}{x}-\cos \frac{1}{x}, g^{\prime}\left(0^{+}\right)=\lim \limits_{x \rightarrow 0^{+}}\left(2 x \sin \frac{1}{x}-\cos \frac{1}{x}\right) g(x)=2xsinx1cosx1,g(0+)=x0+lim(2xsinx1cosx1)不存在。

从上述中我们可以看出,在一般情况下,右导数 f + ′ ( x 0 ) f^{\prime}_+\left(x_{0}\right) f+(x0)存在,右极限 f ′ ( x 0 + ) f^{\prime}\left(x_{0}^{+}\right) f(x0+)不一定存在;反之,右导数 f + ′ ( x 0 ) f^{\prime}_+\left(x_{0}\right) f+(x0)不存在,右极限 f ′ ( x 0 + ) f^{\prime}\left(x_{0}^{+}\right) f(x0+)也可能存在
定理:设函数 f ( x ) f(x) f(x) [ x 0 , x 0 + δ ] [x_{0}, x_{0}+\delta] [x0,x0+δ]上连续,在 ( x 0 , x 0 + δ ) (x_{0}, x_{0}+\delta) (x0,x0+δ)上可导,且 lim ⁡ x → x 0 + f ′ ( x ) = A \lim \limits_{x \rightarrow x_{0}^{+}} f^{\prime}(x)=A xx0+limf(x)=A存在,则函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处的右导数 f ′ + ( x 0 ) f^{\prime}+\left(x_{0}\right) f+(x0)存在,且有 f + ′ ( x 0 ) = lim ⁡ x → x 0 + f ′ ( x ) = A f^{\prime}_+\left(x_{0}\right)=\lim \limits_{x \rightarrow x_{0}^{+}} f^{\prime}(x)=A f+(x0)=xx0+limf(x)=A
证明:由中值定理知,
f ( x 0 + δ ) − f ( x 0 ) = f ′ ( ξ ) δ , ξ ∈ ( x 0 , x 0 + δ ) f\left(x_{0}+\delta)-f\left(x_{0}\right)=f^{\prime}(\xi) \delta, \quad \xi \in\left(x_{0}, x_{0}+\delta\right)\right. f(x0+δ)f(x0)=f(ξ)δ,ξ(x0,x0+δ)
于是
f + ′ ( x 0 ) = lim ⁡ δ → 0 + f ( x 0 + δ ) − f ( x 0 ) δ = lim ⁡ δ → 0 f ′ ( ξ ) = lim ⁡ ξ → x 0 f ′ ( ξ ) = lim ⁡ x → x 0 f ′ ( x ) = A f^{\prime}_+(x_0)=\lim _{\delta \rightarrow 0^{+}} \frac{f\left(x_{0}+\delta)-f\left(x_{0}\right)\right.}{\delta}=\lim _{\delta \rightarrow 0} f^{\prime}(\xi)=\lim _{\xi \rightarrow x_{0}} f^{\prime}(\xi)=\lim _{x \rightarrow x_{0} } f^{\prime}(x)=A f+(x0)=δ0+limδf(x0+δ)f(x0)=δ0limf(ξ)=ξx0limf(ξ)=xx0limf(x)=A

例三 设函数 f ( x ) = { x 2 , x ⩽ 1 a x + b , x > 1 f(x)=\left\{\begin{array}{cl}x^{2}, & x \leqslant 1 \\ a x+b, & x>1\end{array}\right. f(x)={x2,ax+b,x1x>1 x = 1 x=1 x=1处可导,求a与b的值
解析:因为 f ( x ) f(x) f(x) x = 1 x=1 x=1处可导,故 f ( x ) f(x) f(x) x = 1 x=1 x=1处连续,于是
lim ⁡ x → 1 + f ( x ) = lim ⁡ x → 1 + ( a x + b ) = a + b , lim ⁡ x → 1 − f ( x ) = lim ⁡ x → 1 − ( x 2 ) = 1 \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(a x+b)=a+b, \quad \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}}\left(x^{2}\right)=1 x1+limf(x)=x1+lim(ax+b)=a+b,x1limf(x)=x1lim(x2)=1
所以, a + b = 1 a+b=1 a+b=1,又当 x < 1 x<1 x<1时, f ′ ( x ) = 2 x f^{\prime}(x)=2 x f(x)=2x;当 x > 1 x>1 x>1时, f ′ ( x ) = a f^{\prime}(x)=a f(x)=a,由定理知
f − ′ ( 1 ) = lim ⁡ x → 1 − ( 2 x ) = 2 , f + ′ ( 1 ) = lim ⁡ x → 1 + a = a f^{\prime}_-(1)=\lim _{x \rightarrow 1^{-}}(2 x)=2, \quad f^{\prime}_+(1)=\lim _{x \rightarrow 1^{+}} a=a f(1)=x1lim(2x)=2,f+(1)=x1+lima=a
由于 f ( x ) f(x) f(x) x = 1 x=1 x=1处可导,故a=2,解出b=-1.

  • 10
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值