设
R
(
X
)
=
P
(
X
)
/
Q
(
X
)
R(X)=P(X)/Q(X)
R(X)=P(X)/Q(X)是一个真分式,其中分母
Q
(
X
)
Q(X)
Q(X)有分解式:
Q
(
x
)
=
(
x
−
a
)
a
⋯
(
x
−
b
)
β
(
x
2
+
p
x
+
q
)
μ
⋯
(
x
2
+
r
x
+
s
)
v
Q(x)=(x-a)^{a} \cdots(x-b)^{\beta}\left(x^{2}+p x+q\right)^{\mu} \cdots\left(x^{2}+r x+s\right)^{v}
Q(x)=(x−a)a⋯(x−b)β(x2+px+q)μ⋯(x2+rx+s)v,其中
a
,
⋯
,
b
,
p
,
q
,
⋯
,
r
,
,
s
a,\cdots,b,p,q,\cdots,r,,s
a,⋯,b,p,q,⋯,r,,s为实数,
p
2
−
4
q
,
0
,
⋯
,
r
2
−
4
s
<
0
,
α
,
⋯
,
β
,
u
,
⋯
,
v
p^2-4q,0,\cdots,r^2-4s<0,\alpha,\cdots,\beta,u,\cdots,v
p2−4q,0,⋯,r2−4s<0,α,⋯,β,u,⋯,v为正整数,我们有:
R
(
x
)
=
A
a
(
x
−
a
)
a
+
A
a
−
1
(
x
−
a
)
a
−
1
+
⋯
+
A
1
x
−
a
+
⋯
+
B
β
(
x
−
b
)
β
+
B
β
−
1
(
x
−
b
)
β
−
1
+
⋯
+
B
1
x
−
b
+
K
μ
x
+
L
μ
(
x
2
+
p
x
+
q
)
μ
+
⋯
+
K
1
x
+
L
1
x
2
+
p
x
+
q
+
⋯
+
M
r
x
+
N
ν
(
x
2
+
r
x
+
s
)
ν
+
⋯
+
M
1
x
+
N
1
x
2
+
r
x
+
s
\begin{aligned} R(x)=& \frac{A_{a}}{(x-a)^{a}}+\frac{A_{a-1}}{(x-a)^{a-1}}+\cdots+\frac{A_{1}}{x-a}+\cdots \\ &+\frac{B_{\beta}}{(x-b)^{\beta}}+\frac{B_{\beta-1}}{(x-b)^{\beta-1}}+\cdots+\frac{B_{1}}{x-b} \\ &+\frac{K_{\mu} x+L_{\mu}}{\left(x^{2}+p x+q\right)^{\mu}}+\cdots+\frac{K_{1} x+L_{1}}{x^{2}+p x+q}+\cdots \\ &+\frac{M_{r} x+N_{\nu}}{\left(x^{2}+r x+s\right)^{\nu}}+\cdots+\frac{M_{1} x+N_{1}}{x^{2}+r x+s} \end{aligned}
R(x)=(x−a)aAa+(x−a)a−1Aa−1+⋯+x−aA1+⋯+(x−b)βBβ+(x−b)β−1Bβ−1+⋯+x−bB1+(x2+px+q)μKμx+Lμ+⋯+x2+px+qK1x+L1+⋯+(x2+rx+s)νMrx+Nν+⋯+x2+rx+sM1x+N1
其中
A
i
,
⋯
,
K
i
,
⋯
,
N
i
A_i,\cdots,K_i,\cdots,N_i
Ai,⋯,Ki,⋯,Ni都是实数,并且此分解式的所有系数是唯一的。
考研数学:有理函数中多项式分解定理
最新推荐文章于 2024-07-11 13:21:53 发布