考研数学:有理函数中多项式分解定理

R ( X ) = P ( X ) / Q ( X ) R(X)=P(X)/Q(X) R(X)=P(X)/Q(X)是一个真分式,其中分母 Q ( X ) Q(X) Q(X)有分解式:
Q ( x ) = ( x − a ) a ⋯ ( x − b ) β ( x 2 + p x + q ) μ ⋯ ( x 2 + r x + s ) v Q(x)=(x-a)^{a} \cdots(x-b)^{\beta}\left(x^{2}+p x+q\right)^{\mu} \cdots\left(x^{2}+r x+s\right)^{v} Q(x)=(xa)a(xb)β(x2+px+q)μ(x2+rx+s)v,其中 a , ⋯   , b , p , q , ⋯   , r , , s a,\cdots,b,p,q,\cdots,r,,s a,,b,p,q,,r,,s为实数, p 2 − 4 q , 0 , ⋯   , r 2 − 4 s < 0 , α , ⋯   , β , u , ⋯   , v p^2-4q,0,\cdots,r^2-4s<0,\alpha,\cdots,\beta,u,\cdots,v p24q,0,,r24s<0,α,,β,u,,v为正整数,我们有:
R ( x ) = A a ( x − a ) a + A a − 1 ( x − a ) a − 1 + ⋯ + A 1 x − a + ⋯ + B β ( x − b ) β + B β − 1 ( x − b ) β − 1 + ⋯ + B 1 x − b + K μ x + L μ ( x 2 + p x + q ) μ + ⋯ + K 1 x + L 1 x 2 + p x + q + ⋯ + M r x + N ν ( x 2 + r x + s ) ν + ⋯ + M 1 x + N 1 x 2 + r x + s \begin{aligned} R(x)=& \frac{A_{a}}{(x-a)^{a}}+\frac{A_{a-1}}{(x-a)^{a-1}}+\cdots+\frac{A_{1}}{x-a}+\cdots \\ &+\frac{B_{\beta}}{(x-b)^{\beta}}+\frac{B_{\beta-1}}{(x-b)^{\beta-1}}+\cdots+\frac{B_{1}}{x-b} \\ &+\frac{K_{\mu} x+L_{\mu}}{\left(x^{2}+p x+q\right)^{\mu}}+\cdots+\frac{K_{1} x+L_{1}}{x^{2}+p x+q}+\cdots \\ &+\frac{M_{r} x+N_{\nu}}{\left(x^{2}+r x+s\right)^{\nu}}+\cdots+\frac{M_{1} x+N_{1}}{x^{2}+r x+s} \end{aligned} R(x)=(xa)aAa+(xa)a1Aa1++xaA1++(xb)βBβ+(xb)β1Bβ1++xbB1+(x2+px+q)μKμx+Lμ++x2+px+qK1x+L1++(x2+rx+s)νMrx+Nν++x2+rx+sM1x+N1
其中 A i , ⋯   , K i , ⋯   , N i A_i,\cdots,K_i,\cdots,N_i Ai,,Ki,,Ni都是实数,并且此分解式的所有系数是唯一的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值