二重积分对称性证明

1.二重积分对称性证明

1.1.积分区域D关于坐标轴对称

定理:如果积分区域D关于 x x x轴对称, f ( x , y ) f(x,y) f(x,y) y y y的奇偶函数,则二重积分
∬ D f ( x , y ) d x d y = { 0 , f ( x , − y ) = − f ( x , y ) 2 ∬ D 1 f ( x , y ) d x d y , f ( x , − y ) = f ( x , y ) \iint_{D} f(x, y) d x d y=\left\{\begin{array}{ll} 0 & , f(x,-y)=-f(x, y) \\ 2 \iint_{D_{1}} f(x, y) d x d y, & f(x,-y)=f(x, y) \end{array}\right. Df(x,y)dxdy={02D1f(x,y)dxdy,,f(x,y)=f(x,y)f(x,y)=f(x,y)
其中 D 1 D_1 D1是x轴的上半面部分
证明
∬ D f ( x , y ) d x d y = ∬ D 1 f ( x , y ) d x d y + ∬ D 2 f ( x , y ) d x d y \iint_{D} f(x, y) d x d y=\iint_{D_{1}} f(x, y) d x d y+\iint_{D_{2}} f(x, y) d x d y Df(x,y)dxdy=D1f(x,y)dxdy+D2f(x,y)dxdy
若区域D对称于x轴,对任意 P ( x , y ) ∈ D 1 P(x, y) \in D_{1} P(x,y)D1,其对称点 P ′ ( x , − y ) ∈ D 2 P^{\prime}(x,-y) \in D_{2} P(x,y)D2
D 1 = { 0 ≤ y ≤ φ ( x ) , a ≤ x ≤ b } , D 2 = { − φ ( x ) ≤ y ≤ 0 , a ≤ x ≤ b } D_{1}=\{0 \leq y \leq \varphi(x), a \leq x \leq b\}, \quad D_{2}=\{-\varphi(x) \leq y \leq 0, a \leq x \leq b\} D1={0yφ(x),axb},D2={φ(x)y0,axb},令
{ x = x y = − t \left\{\begin{array}{l} x=x \\ y=-t \end{array}\right. {x=xy=t
D 2 D_2 D2变化为 x o t xot xot坐标面上的 D 1 = { 0 ≤ t ≤ φ ( x ) , a ≤ x ≤ b } D_{1}=\{0 \leq t \leq \varphi(x), \quad a \leq x \leq b\} D1={0tφ(x),axb},且雅克比行列式
∂ ( x , y ) ∂ ( x , t ) = ∣ 1 0 0 − 1 ∣ = − 1 \frac{\partial(x, y)}{\partial(x, t)}=\left|\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right|=-1 (x,t)(x,y)=1001=1

∬ D 2 f ( x , y ) d x d y = ∬ D 1 f ( x , − t ) ⋅ ∣ − 1 ∣ d x d t = ∬ D 1 f ( x , − y ) d x d y = { ∬ D 1 f ( x , y ) d x d y , f ( x , − y ) = f ( x , y ) − ∬ D 1 f ( x , y ) d x d y , f ( x , − y ) = − f ( x , y ) \begin{aligned} \iint_{D_{2}} f(x, y) d x d y &=\iint_{D_{1}} f(x,-t) \cdot|-1| d x d t=\iint_{D_{1}} f(x,-y) d x d y \\ &=\left\{\begin{array}{cc} \iint_{D_{1}} f(x, y) d x d y & , f(x,-y)=f(x, y) \\ -\iint_{D_{1}} f(x, y) d x d y & , f(x,-y)=-f(x, y) \end{array}\right. \end{aligned} D2f(x,y)dxdy=D1f(x,t)1dxdt=D1f(x,y)dxdy={D1f(x,y)dxdyD1f(x,y)dxdy,f(x,y)=f(x,y),f(x,y)=f(x,y)
带入上式得:
∬ D f ( x , y ) d x d y = { 0 , f ( x , y ) = − f ( x , − y ) 2 ∬ D 1 f ( x , y ) d x d y , f ( x , y ) = f ( x , − y ) \iint_{D} f(x, y) d x d y=\left\{\begin{array}{ll} 0 & , f(x, y)=-f(x,-y) \\ 2 \iint_{D_{1}} f(x, y) d x d y & , f(x, y)=f(x,-y) \end{array}\right. Df(x,y)dxdy={02D1f(x,y)dxdy,f(x,y)=f(x,y),f(x,y)=f(x,y)

例题一:计算 ∬ D y ln ⁡ ( 1 + x 2 + y 2 ) d x d y \iint_{D} y \ln \left(1+x^{2}+y^{2}\right) d x d y Dyln(1+x2+y2)dxdy,其中区域D: x 2 + y 2 ≤ 1 , x ≥ 0 x^{2}+y^{2} \leq 1, x \geq 0 x2+y21,x0
解析 f ( x , y ) = y ln ⁡ ( 1 + x 2 + y 2 ) f(x, y)=y \ln \left(1+x^{2}+y^{2}\right) f(x,y)=yln(1+x2+y2)是关于 y y y的奇函数且D关于 x x x轴对称,
所以
∬ D y ln ⁡ ( 1 + x 2 + y 2 ) d x d y = 0 \iint_{D} y \ln \left(1+x^{2}+y^{2}\right) d x d y=0 Dyln(1+x2+y2)dxdy=0

例题二:计算 ∬ D sin ⁡ ( x 2 + y 2 ) d x d y \iint_{D} \sin \left(x^{2}+y^{2}\right) d x d y Dsin(x2+y2)dxdy,其中区域D: x 2 + y 2 ≤ 4 , x ≥ 0 x^{2}+y^{2} \leq 4, x \geq 0 x2+y24,x0
解析:因为 f ( x , y ) = sin ⁡ ( x 2 + y 2 ) f(x, y)=\sin \left(x^{2}+y^{2}\right) f(x,y)=sin(x2+y2)是关于 y y y的偶函数,且D关于 x x x轴对称,所以
∬ D sin ⁡ ( x 2 + y 2 ) d x d y = 2 ∫ 0 π 2 d θ ∫ 0 2 r sin ⁡ r 2 = π 2 ( 1 − cos ⁡ 4 ) \iint_{D} \sin \left(x^{2}+y^{2}\right) d x d y=2 \int_{0}^{\frac{\pi}{2}} d \theta \int_{0}^{2} r \sin r^{2}=\frac{\pi}{2}(1-\cos 4) Dsin(x2+y2)dxdy=202πdθ02rsinr2=2π(1cos4)

1.2.积分区域D关于 y y y轴对称, f ( x , y ) f(x,y) f(x,y)为D上的连续函数

定理:如果积分区域D关于 y y y轴对称, f ( x , y ) f(x, y) f(x,y) x x x的奇偶函数,则二重积分
∬ D f ( x , y ) d x d y = { 0 , f ( − x , y ) = − f ( x , y ) 2 ∬ D f ( x , y ) d x d y , f ( − x , y ) = f ( x , y ) \iint_{D} f(x, y) d x d y=\left\{\begin{array}{lll} 0 & , & f(-x, y)=-f(x, y) \\ 2 \iint_{D} f(x, y) d x d y & , & f(-x, y)=f(x, y) \end{array}\right. Df(x,y)dxdy={02Df(x,y)dxdy,,f(x,y)=f(x,y)f(x,y)=f(x,y)
其中 D 1 D_1 D1 D D D y y y轴的右半面部分。

证明:若区域D对称于 y y y轴,对任意 P ( x , y ) ∈ D 1 P(x, y) \in D_{1} P(x,y)D1,对称点 P ′ ( − x , y ) ∈ D 2 P^{\prime}(-x, y) \in D_{2} P(x,y)D2,类似上述定理得证明可得
∬ D f ( x , y ) d x d y = { 0 , f ( − x , y ) = − f ( x , y ) 2 ∬ D 1 f ( x , y ) d x d y , f ( − x , y ) = f ( x , y ) \iint_{D} f(x, y) d x d y=\left\{\begin{array}{ll} 0 & , f(-x, y)=-f(x, y) \\ 2 \iint_{D_{1}} f(x, y) d x d y & , f(-x, y)=f(x, y) \end{array}\right. Df(x,y)dxdy={02D1f(x,y)dxdy,f(x,y)=f(x,y),f(x,y)=f(x,y)

例题三:计算 ∬ D ( x + x 3 y 2 ) d x d y \iint_{D}\left(x+x^{3} y^{2}\right) d x d y D(x+x3y2)dxdy,其中 D : x 2 + y 2 ≤ 4 , y ≥ 0 D: \quad x^{2}+y^{2} \leq 4, y \geq 0 D:x2+y24,y0
解析
f ( x , y ) = x + x 3 y 2 f ( − x , y ) = − x − x 3 y 2 = − ( x + x 3 y 2 ) = − f ( x , y ) \begin{array}{c} f(x, y)=x+x^{3} y^{2} \\ f(-x, y)=-x-x^{3} y^{2}=-\left(x+x^{3} y^{2}\right)=-f(x, y) \end{array} f(x,y)=x+x3y2f(x,y)=xx3y2=(x+x3y2)=f(x,y)
且区域D关于 y y y轴对称,所以
∬ D ( x + x 3 y 2 ) d x d y = 0 \iint_{D}\left(x+x^{3} y^{2}\right) d x d y=0 D(x+x3y2)dxdy=0

例题四:计算 ∬ D x 2 y d x d y \iint_{D} x^{2} y d x d y Dx2ydxdy,其中区域 D : − 1 ≤ x ≤ 1 , 0 ≤ y ≤ 1 D:-1 \leq x \leq 1,0 \leq y \leq 1 D:1x1,0y1
解析 f ( x , y ) = x 2 y f(x, y)=x^{2} y f(x,y)=x2y是关于 x x x的偶函数,且区域D关于 y y y轴对称,所以
∬ D x 2 y d x d y = 2 ∫ 0 1 d y ∫ 0 1 x 2 y d x = 2 ∫ 0 1 y d y ∫ 0 1 x 2 d x = 1 3 \iint_{D} x^{2} y d x d y=2 \int_{0}^{1} d y \int_{0}^{1} x^{2} y d x=2 \int_{0}^{1} y d y \int_{0}^{1} x^{2} d x=\frac{1}{3} Dx2ydxdy=201dy01x2ydx=201ydy01x2dx=31

1.3.积分区域D关于坐标区域内任意直线对称

定理:如果积分域D关于直线 y = a x + b y=a x+b y=ax+b对称,则二重积分
∬ D f ( x , y ) d x d y = { 0 , f ( x + 2 a ( y − a x − b ) 1 + a 2 , a x + b + ( a 2 − 1 ) ( y − a x − b ) 1 + a 2 ) = − f ( x , y ) 2 ∬ D 1 f ( x , y ) d x d y , f ( x + 2 a ( y − a x − b ) 1 + a 2 , a x + b + ( a 2 − 1 ) ( y − a x − b ) 1 + a 2 ) = f ( x , y ) \iint_{D} f(x, y) d x d y=\left\{\begin{array}{ll} 0 & , f\left(x+\frac{2 a(y-a x-b)}{1+a^{2}}, a x+b+\frac{\left(a^{2}-1\right)(y-a x-b)}{1+a^{2}}\right)=-f(x, y) \\ 2 \iint_{D_{1}} f(x, y) d x d y & , \quad f\left(x+\frac{2 a(y-a x-b)}{1+a^{2}}, a x+b+\frac{\left(a^{2}-1\right)(y-a x-b)}{1+a^{2}}\right)=f(x, y) \end{array}\right. Df(x,y)dxdy=02D1f(x,y)dxdy,f(x+1+a22a(yaxb),ax+b+1+a2(a21)(yaxb))=f(x,y),f(x+1+a22a(yaxb),ax+b+1+a2(a21)(yaxb))=f(x,y)
其中 D 1 D_1 D1 D D D在以直线 y = a x + b y=ax+b y=ax+b为轴的右半面部分。
设区域D对称于直线 y = a x + b y=ax+b y=ax+b,不妨设 a > 0 a>0 a>0,即倾斜角 θ \theta θ为锐角,首先,平移坐标轴,得到坐标系 x ′ o ′ y ′ x^{\prime} o^{\prime} y^{\prime} xoy
{ x ′ = x + b a y ′ = y \left\{\begin{array}{c} x^{\prime}=x+\frac{b}{a} \\ y^{\prime}=y \end{array}\right. {x=x+aby=y

{ x = x ′ − b a y = y ′ \left\{\begin{array}{c} x=x^{\prime}-\frac{b}{a} \\ y=y^{\prime} \end{array}\right. {x=xaby=y
其次,将坐标系 x ′ o ′ y ′ x^{\prime} o^{\prime} y^{\prime} xoy沿逆时针方向旋转,旋转角为 θ ( tan ⁡ θ = a ) \theta(\tan \theta=a) θ(tanθ=a),使 x ′ x^{\prime} x与直线 y = a x + b y=ax+b y=ax+b重合,得到新坐标系 u O ′ v : u O^{\prime} v: uOv:
{ x ′ = ( u − v tan ⁡ θ ) cos ⁡ θ = u − a v 1 + a 2 y ′ = ( u − v tan ⁡ θ ) sin ⁡ θ + v sec ⁡ θ = a u + v 1 + a 2 \left\{\begin{array}{l} x^{\prime}=(u-v \tan \theta) \cos \theta=\frac{u-a v}{\sqrt{1+a^{2}}} \\ y^{\prime}=(u-v \tan \theta) \sin \theta+v \sec \theta=\frac{a u+v}{\sqrt{1+a^{2}}} \end{array}\right. {x=(uvtanθ)cosθ=1+a2 uavy=(uvtanθ)sinθ+vsecθ=1+a2 au+v
根据上式,可得
{ x = u − a v 1 + a 2 − b a y = a u + v 1 + a 2 \left\{\begin{array}{l} x=\frac{u-a v}{\sqrt{1+a^{2}}}-\frac{b}{a} \\ y=\frac{a u+v}{\sqrt{1+a^{2}}} \end{array}\right. {x=1+a2 uavaby=1+a2 au+v

{ u = 1 + a 2 ( x + b a ) + a ( y − a x − b ) 1 + a 2 v = y − a x − b 1 + a 2 \left\{\begin{array}{l} u=\sqrt{1+a^{2}}\left(x+\frac{b}{a}\right)+\frac{a(y-a x-b)}{\sqrt{1+a^{2}}} \\ v=\frac{y-a x-b}{\sqrt{1+a^{2}}} \end{array}\right. {u=1+a2 (x+ab)+1+a2 a(yaxb)v=1+a2 yaxb
x O y xOy xOy坐标面内对称于直线 y = a x + b y=ax+b y=ax+b的区域D,在新坐标系 U O ′ V U O^{\prime} V UOV内对应的区域 D ′ D^{\prime} D关于 u u u轴对称,
x o y xoy xoy面内任一点 P ( x , y ) ∈ D 1 P(x, y) \in D_{1} P(x,y)D1,在 u o ′ v u o^{\prime} v uov面内对应点 P 1 ( u , v ) ∈ D 1 ′ P_{1}(u, v) \in D_{1}^{\prime} P1(u,v)D1
u = 1 + a 2 ( x + b a ) + a ( y − a x − b ) 1 + a 2 , v = y − a x − b 1 + a 2 u=\sqrt{1+a^{2}}\left(x+\frac{b}{a}\right)+\frac{a(y-a x-b)}{\sqrt{1+a^{2}}}, \quad v=\frac{y-a x-b}{\sqrt{1+a^{2}}} u=1+a2 (x+ab)+1+a2 a(yaxb),v=1+a2 yaxb
P 1 ( u , v ) P_{1}(u, v) P1(u,v)关于 u u u轴对称点 P 1 ′ ( u , − v ) ∈ D 2 ′ P_{1}^{\prime}(u,-v) \in D_{2}^{\prime} P1(u,v)D2 P 1 ′ ( u , − v ) P_{1}^{\prime}(u,-v) P1(u,v) x o y xoy xoy面内对应点为
P ′ ( u − a ( − v ) 1 + a 2 − b a , a u + ( − v ) 1 + a 2 ) ∈ D 2 P^{\prime}\left(\frac{u-a(-v)}{\sqrt{1+a^{2}}}-\frac{b}{a}, \frac{a u+(-v)}{\sqrt{1+a^{2}}}\right) \in D_{2} P(1+a2 ua(v)ab,1+a2 au+(v))D2
u , v u,v u,v带入,并化简得到:
P ′ ( x + 2 a ( y − a x − b ) 1 + a 2 , a x + b + ( a 2 − 1 ) ( y − a x − b ) 1 + a 2 ) ∈ D 2 P^{\prime}\left(x+\frac{2 a(y-a x-b)}{1+a^{2}}, a x+b+\frac{\left(a^{2}-1\right)(y-a x-b)}{1+a^{2}}\right) \in D_{2} P(x+1+a22a(yaxb),ax+b+1+a2(a21)(yaxb))D2
因此, x o y x o y xoy面内点 P ( x , y ) ∈ D 1 P(x, y) \in D_{1} P(x,y)D1关于直线 y = a x + b y=a x+b y=ax+b的对称点为
P ′ ( x + 2 a ( y − a x − b ) 1 + a 2 , a x + b + ( a 2 − 1 ) ( y − a x − b ) 1 + a 2 ) ∈ D 2 P^{\prime}\left(x+\frac{2 a(y-a x-b)}{1+a^{2}}, a x+b+\frac{\left(a^{2}-1\right)(y-a x-b)}{1+a^{2}}\right) \in D_{2} P(x+1+a22a(yaxb),ax+b+1+a2(a21)(yaxb))D2
雅克比行列式为
∂ ( x , y ) ∂ ( u , v ) = ∣ 1 1 + a 2 − a 1 + a 2 a 1 + a 2 1 1 + a 2 ∣ = 1 \frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc} \frac{1}{\sqrt{1+a^{2}}} & \frac{-a}{\sqrt{1+a^{2}}} \\ \frac{a}{\sqrt{1+a^{2}}} & \frac{1}{\sqrt{1+a^{2}}} \end{array}\right|=1 (u,v)(x,y)=1+a2 11+a2 a1+a2 a1+a2 1=1
于是
∬ D f ( x , y ) d x d y = ∬ D f ( u − a v 1 + a 2 − b a , a u + v 1 + a 2 ) d u d v \iint_{D} f(x, y) d x d y=\iint_{D} f\left(\frac{u-a v}{\sqrt{1+a^{2}}}-\frac{b}{a}, \frac{a u+v}{\sqrt{1+a^{2}}}\right) d u d v Df(x,y)dxdy=Df(1+a2 uavab,1+a2 au+v)dudv
则可得
∬ D 1 f ( u − a v 1 + a 2 − b a , a u + v 1 + a 2 ) d u d v = { 0 f ( u + a v 1 + a 2 − b a , a u − v 1 + a 2 ) = − f ( u − a v 1 − a 2 − b a , a u + v 1 + a 2 ) 2 ∬ D 1 f ( u − a v 1 + a 2 − b a , a u + v 1 + a 2 ) d u d v f ( u + a v 1 + a 2 − b a , a u − v 1 + a 2 ) = f ( u − a v 1 + a 2 − b a , a u + v 1 + a 2 ) \begin{array}{l} \qquad \iint_{D_{1}} f\left(\frac{u-a v}{\sqrt{1+a^{2}}}-\frac{b}{a}, \frac{a u+v}{\sqrt{1+a^{2}}}\right) d u d v \\ =\left\{\begin{array}{ll} 0 & f\left(\frac{u+a v}{\sqrt{1+a^{2}}}-\frac{b}{a}, \frac{a u-v}{\sqrt{1+a^{2}}}\right)=-f\left(\frac{u-a v}{\sqrt{1-a^{2}}}-\frac{b}{a}, \frac{a u+v}{\sqrt{1+a^{2}}}\right) \\ 2 \iint_{D_{1}} f\left(\frac{u-a v}{\sqrt{1+a^{2}}}-\frac{b}{a}, \frac{a u+v}{\sqrt{1+a^{2}}}\right) d u d v & f\left(\frac{u+a v}{\sqrt{1+a^{2}}}-\frac{b}{a}, \frac{a u-v}{\sqrt{1+a^{2}}}\right)=f\left(\frac{u-a v}{\sqrt{1+a^{2}}}-\frac{b}{a}, \frac{a u+v}{\sqrt{1+a^{2}}}\right) \end{array}\right. \end{array} D1f(1+a2 uavab,1+a2 au+v)dudv=02D1f(1+a2 uavab,1+a2 au+v)dudvf(1+a2 u+avab,1+a2 auv)=f(1a2 uavab,1+a2 au+v)f(1+a2 u+avab,1+a2 auv)=f(1+a2 uavab,1+a2 au+v)

∬ D f ( x , y ) d x d y = { 0 , f ( x + 2 a ( y − a x − b ) 1 + a 2 , a x + b + ( a 2 − 1 ) ( y − a x − b ) 1 + a 2 ) = − f ( x , y ) 2 ∭ D 1 f ( x , y ) d x d y , f ( x + 2 a ( y − a x − b ) 1 + a 2 , a x + b + ( a 2 − 1 ) ( y − a x − b ) 1 + a 2 ) = f ( x , y ) \iint_{D} f(x, y) d x d y=\left\{\begin{array}{ll} 0 & , f\left(x+\frac{2 a(y-a x-b)}{1+a^{2}}, a x+b+\frac{\left(a^{2}-1\right)(y-a x-b)}{1+a^{2}}\right)=-f(x, y) \\ 2 \iiint_{D_{1}} f(x, y) d x d y & , f\left(x+\frac{2 a(y-a x-b)}{1+a^{2}}, a x+b+\frac{\left(a^{2}-1\right)(y-a x-b)}{1+a^{2}}\right)=f(x, y) \end{array}\right. Df(x,y)dxdy=02D1f(x,y)dxdy,f(x+1+a22a(yaxb),ax+b+1+a2(a21)(yaxb))=f(x,y),f(x+1+a22a(yaxb),ax+b+1+a2(a21)(yaxb))=f(x,y)
推论一:如果积分域D关于直线 y = x y=x y=x对称,则二重积分
∬ D f ( x , y ) d x d y = ∬ D f ( y , x ) d x d y \iint_{D} f(x, y) d x d y=\iint_{D} f(y, x) d x d y Df(x,y)dxdy=Df(y,x)dxdy
例题一:设 f ( x ) f(x) f(x)为恒正的连续函数,计算积分
∬ x 2 + y 2 ≤ r 2 a f ( x ) + b f ( y ) f ( x ) + f ( y ) d x d y \iint_{x^{2}+y^{2} \leq r^{2}} \frac{a f(x)+b f(y)}{f(x)+f(y)} d x d y x2+y2r2f(x)+f(y)af(x)+bf(y)dxdy
解析:由于积分区域 x 2 + y 2 ≤ r 2 x^{2}+y^{2} \leq r^{2} x2+y2r2关于直线 y = x y=x y=x对称,可得
∬ x 2 + y 2 ≤ r 2 a f ( x ) + b f ( y ) f ( x ) + f ( y ) d x d y = ∬ x 2 + y 2 ≤ r 2 a f ( y ) + b f ( x ) f ( y ) + f ( x ) d x d y \iint_{x^{2}+y^{2} \leq r^{2}} \frac{a f(x)+b f(y)}{f(x)+f(y)} d x d y=\iint_{x^{2}+y^{2} \leq r^{2}} \frac{a f(y)+b f(x)}{f(y)+f(x)} d x d y x2+y2r2f(x)+f(y)af(x)+bf(y)dxdy=x2+y2r2f(y)+f(x)af(y)+bf(x)dxdy
于是
2 ∬ x 2 + y 2 ≤ r 2 a f ( x ) + b f ( y ) f ( x ) + f ( y ) d x d y = ∬ x 2 + y 2 ≤ r 2 a f ( x ) + b f ( y ) f ( x ) + f ( y ) d x d y + ∬ x 2 + y 2 ≤ r 2 a f ( y ) + b f ( x ) f ( y ) + f ( x ) d x d y = ∬ x 2 + y 2 ≤ r 2 ( a + b ) d x d y = π ( a + b ) r 2 \begin{aligned} & 2 \iint_{x^{2}+y^{2} \leq r^{2}} \frac{a f(x)+b f(y)}{f(x)+f(y)} d x d y \\ =& \iint_{x^{2}+y^{2} \leq r^{2}} \frac{a f(x)+b f(y)}{f(x)+f(y)} d x d y+\iint_{x^{2}+y^{2} \leq r^{2}} \frac{a f(y)+b f(x)}{f(y)+f(x)} d x d y \\ =& \iint_{x^{2}+y^{2} \leq r^{2}}(a+b) d x d y=\pi(a+b) r^{2} \end{aligned} ==2x2+y2r2f(x)+f(y)af(x)+bf(y)dxdyx2+y2r2f(x)+f(y)af(x)+bf(y)dxdy+x2+y2r2f(y)+f(x)af(y)+bf(x)dxdyx2+y2r2(a+b)dxdy=π(a+b)r2

∬ x 2 + y 2 ≤ r 2 a f ( x ) + b f ( y ) f ( x ) + f ( y ) d x d y = π 2 ( a + b ) r 2 \iint_{x^{2}+y^{2} \leq r^{2}} \frac{a f(x)+b f(y)}{f(x)+f(y)} d x d y=\frac{\pi}{2}(a+b) r^{2} x2+y2r2f(x)+f(y)af(x)+bf(y)dxdy=2π(a+b)r2

推论二:若积分区域关于直线 y = − x y=-x y=x对称且满足 f ( − x , − y ) = − f ( x , y ) f(-x,-y)=-f(x, y) f(x,y)=f(x,y),则有
∬ D f ( x , y ) d x d y = 0 \iint_{D} f(x, y) d x d y=0 Df(x,y)dxdy=0
或满足 f ( − x , − y ) = f ( x , y ) f(-x,-y)=f(x, y) f(x,y)=f(x,y),则有
∬ D f ( x , y ) d x d y = 2 ∬ D 1 f ( x , y ) d x d y \iint_{D} f(x, y) d x d y=2 \iint_{D_{1}} f(x, y) d x d y Df(x,y)dxdy=2D1f(x,y)dxdy

1.4.积分区域D关于坐标原点对称

如果积分区域D关于原点对称, f ( x , y ) f(x,y) f(x,y)同时为 x , y x,y x,y的奇偶函数,则二重积分
∬ D f ( x , y ) d x d y = { 0 f ( − x , − y ) = − f ( x , y ) 2 ∬ D 1 f ( x , y ) d x d y , f ( − x , − y ) = f ( x , y ) \iint_{D} f(x, y) d x d y=\left\{\begin{array}{ll} 0 & f(-x,-y)=-f(x, y) \\ 2 \iint_{D_{1}} f(x, y) d x d y, & f(-x,-y)=f(x, y) \end{array}\right. Df(x,y)dxdy={02D1f(x,y)dxdy,f(x,y)=f(x,y)f(x,y)=f(x,y)
其中 D 1 D_1 D1 D D D的上半面部分
证明:若区域对称于原点,对任意 P ( x , y ) ∈ D 1 P(x, y) \in D_{1} P(x,y)D1,对称点 P ′ ( − x , − y ) ∈ D 2 P^{\prime}(-x,-y) \in D_{2} P(x,y)D2 D 1 = { ψ ( x ) ≤ y ≤ φ ( x ) , a ≤ x ≤ b } , D 2 = { − φ ( − x ) ≤ y ≤ − ψ ( − x ) , − b ≤ x ≤ − a } D_{1}=\{\psi(x) \leq y \leq \varphi(x), \quad a \leq x \leq b\}, \quad D_{2}=\{-\varphi(-x) \leq y \leq-\psi(-x),-b \leq x \leq-a\} D1={ψ(x)yφ(x),axb},D2={φ(x)yψ(x),bxa},令
{ x = − u y = − v \left\{\begin{array}{l} x=-u \\ y=-v \end{array}\right. {x=uy=v
则区域 D 2 D_2 D2变化为 u O v u O v uOv坐标平面内区域 D 1 = { ψ ( x ) ≤ y ≤ φ ( x ) , a ≤ x ≤ b } D_{1}=\{\psi(x) \leq y \leq \varphi(x), \quad a \leq x \leq b\} D1={ψ(x)yφ(x),axb},雅克比行列式
∂ ( x , y ) ∂ ( u , v ) = ∣ − 1 0 0 − 1 ∣ = 1 \frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right|=1 (u,v)(x,y)=1001=1
所以
∬ D 2 f ( x , y ) d x d y = ∬ D 1 f ( − u , − v ) d u d v = ∬ D 1 f ( − x , − y ) d x d y \iint_{D_{2}} f(x, y) d x d y=\iint_{D_{1}} f(-u,-v) d u d v=\iint_{D_{1}} f(-x,-y) d x d y D2f(x,y)dxdy=D1f(u,v)dudv=D1f(x,y)dxdy
= { − ∬ D 1 f ( x , y ) d x d y , f ( − x , − y ) = − f ( x , y ) ∬ D 1 f ( x , y ) d x d y , f ( − x , − y ) = f ( x , y ) =\left\{\begin{array}{ll} -\iint_{D_{1}} f(x, y) d x d y & , f(-x,-y)=-f(x, y) \\ \iint_{D_{1}} f(x, y) d x d y & , f(-x,-y)=f(x, y) \end{array}\right. ={D1f(x,y)dxdyD1f(x,y)dxdy,f(x,y)=f(x,y),f(x,y)=f(x,y)
代入
∬ D f ( x , y ) d x d y = ∬ D 1 f ( x , y ) d x d y + ∬ D 2 f ( x , y ) d x d y \iint_{D} f(x, y) d x d y=\iint_{D_{1}} f(x, y) d x d y+\iint_{D_{2}} f(x, y) d x d y Df(x,y)dxdy=D1f(x,y)dxdy+D2f(x,y)dxdy

∬ D f ( x , y ) d x d y = { 0 ,  若  f ( − x , − y ) = − f ( x , y ) 2 ∬ D 1 f ( x , y ) d x d y , 若 f ( − x , − y ) = f ( x , y ) \iint_{D} f(x, y) d x d y=\left\{\begin{array}{ll} 0 & , \quad \text { 若 } f(-x,-y)=-f(x, y) \\ 2 \iint_{D_{1}} f(x, y) d x d y & , 若 f(-x,-y)=f(x, y) \end{array}\right. Df(x,y)dxdy={02D1f(x,y)dxdy,  f(x,y)=f(x,y),f(x,y)=f(x,y)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值