1.二重积分对称性证明
1.1.积分区域D关于坐标轴对称
定理:如果积分区域D关于
x
x
x轴对称,
f
(
x
,
y
)
f(x,y)
f(x,y)为
y
y
y的奇偶函数,则二重积分
∬
D
f
(
x
,
y
)
d
x
d
y
=
{
0
,
f
(
x
,
−
y
)
=
−
f
(
x
,
y
)
2
∬
D
1
f
(
x
,
y
)
d
x
d
y
,
f
(
x
,
−
y
)
=
f
(
x
,
y
)
\iint_{D} f(x, y) d x d y=\left\{\begin{array}{ll} 0 & , f(x,-y)=-f(x, y) \\ 2 \iint_{D_{1}} f(x, y) d x d y, & f(x,-y)=f(x, y) \end{array}\right.
∬Df(x,y)dxdy={02∬D1f(x,y)dxdy,,f(x,−y)=−f(x,y)f(x,−y)=f(x,y)
其中
D
1
D_1
D1是x轴的上半面部分
证明:
∬
D
f
(
x
,
y
)
d
x
d
y
=
∬
D
1
f
(
x
,
y
)
d
x
d
y
+
∬
D
2
f
(
x
,
y
)
d
x
d
y
\iint_{D} f(x, y) d x d y=\iint_{D_{1}} f(x, y) d x d y+\iint_{D_{2}} f(x, y) d x d y
∬Df(x,y)dxdy=∬D1f(x,y)dxdy+∬D2f(x,y)dxdy
若区域D对称于x轴,对任意
P
(
x
,
y
)
∈
D
1
P(x, y) \in D_{1}
P(x,y)∈D1,其对称点
P
′
(
x
,
−
y
)
∈
D
2
P^{\prime}(x,-y) \in D_{2}
P′(x,−y)∈D2,
D
1
=
{
0
≤
y
≤
φ
(
x
)
,
a
≤
x
≤
b
}
,
D
2
=
{
−
φ
(
x
)
≤
y
≤
0
,
a
≤
x
≤
b
}
D_{1}=\{0 \leq y \leq \varphi(x), a \leq x \leq b\}, \quad D_{2}=\{-\varphi(x) \leq y \leq 0, a \leq x \leq b\}
D1={0≤y≤φ(x),a≤x≤b},D2={−φ(x)≤y≤0,a≤x≤b},令
{
x
=
x
y
=
−
t
\left\{\begin{array}{l} x=x \\ y=-t \end{array}\right.
{x=xy=−t
则
D
2
D_2
D2变化为
x
o
t
xot
xot坐标面上的
D
1
=
{
0
≤
t
≤
φ
(
x
)
,
a
≤
x
≤
b
}
D_{1}=\{0 \leq t \leq \varphi(x), \quad a \leq x \leq b\}
D1={0≤t≤φ(x),a≤x≤b},且雅克比行列式
∂
(
x
,
y
)
∂
(
x
,
t
)
=
∣
1
0
0
−
1
∣
=
−
1
\frac{\partial(x, y)}{\partial(x, t)}=\left|\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right|=-1
∂(x,t)∂(x,y)=∣∣∣∣100−1∣∣∣∣=−1
故
∬
D
2
f
(
x
,
y
)
d
x
d
y
=
∬
D
1
f
(
x
,
−
t
)
⋅
∣
−
1
∣
d
x
d
t
=
∬
D
1
f
(
x
,
−
y
)
d
x
d
y
=
{
∬
D
1
f
(
x
,
y
)
d
x
d
y
,
f
(
x
,
−
y
)
=
f
(
x
,
y
)
−
∬
D
1
f
(
x
,
y
)
d
x
d
y
,
f
(
x
,
−
y
)
=
−
f
(
x
,
y
)
\begin{aligned} \iint_{D_{2}} f(x, y) d x d y &=\iint_{D_{1}} f(x,-t) \cdot|-1| d x d t=\iint_{D_{1}} f(x,-y) d x d y \\ &=\left\{\begin{array}{cc} \iint_{D_{1}} f(x, y) d x d y & , f(x,-y)=f(x, y) \\ -\iint_{D_{1}} f(x, y) d x d y & , f(x,-y)=-f(x, y) \end{array}\right. \end{aligned}
∬D2f(x,y)dxdy=∬D1f(x,−t)⋅∣−1∣dxdt=∬D1f(x,−y)dxdy={∬D1f(x,y)dxdy−∬D1f(x,y)dxdy,f(x,−y)=f(x,y),f(x,−y)=−f(x,y)
带入上式得:
∬
D
f
(
x
,
y
)
d
x
d
y
=
{
0
,
f
(
x
,
y
)
=
−
f
(
x
,
−
y
)
2
∬
D
1
f
(
x
,
y
)
d
x
d
y
,
f
(
x
,
y
)
=
f
(
x
,
−
y
)
\iint_{D} f(x, y) d x d y=\left\{\begin{array}{ll} 0 & , f(x, y)=-f(x,-y) \\ 2 \iint_{D_{1}} f(x, y) d x d y & , f(x, y)=f(x,-y) \end{array}\right.
∬Df(x,y)dxdy={02∬D1f(x,y)dxdy,f(x,y)=−f(x,−y),f(x,y)=f(x,−y)
例题一:计算
∬
D
y
ln
(
1
+
x
2
+
y
2
)
d
x
d
y
\iint_{D} y \ln \left(1+x^{2}+y^{2}\right) d x d y
∬Dyln(1+x2+y2)dxdy,其中区域D:
x
2
+
y
2
≤
1
,
x
≥
0
x^{2}+y^{2} \leq 1, x \geq 0
x2+y2≤1,x≥0
解析:
f
(
x
,
y
)
=
y
ln
(
1
+
x
2
+
y
2
)
f(x, y)=y \ln \left(1+x^{2}+y^{2}\right)
f(x,y)=yln(1+x2+y2)是关于
y
y
y的奇函数且D关于
x
x
x轴对称,
所以
∬
D
y
ln
(
1
+
x
2
+
y
2
)
d
x
d
y
=
0
\iint_{D} y \ln \left(1+x^{2}+y^{2}\right) d x d y=0
∬Dyln(1+x2+y2)dxdy=0
例题二:计算
∬
D
sin
(
x
2
+
y
2
)
d
x
d
y
\iint_{D} \sin \left(x^{2}+y^{2}\right) d x d y
∬Dsin(x2+y2)dxdy,其中区域D:
x
2
+
y
2
≤
4
,
x
≥
0
x^{2}+y^{2} \leq 4, x \geq 0
x2+y2≤4,x≥0
解析:因为
f
(
x
,
y
)
=
sin
(
x
2
+
y
2
)
f(x, y)=\sin \left(x^{2}+y^{2}\right)
f(x,y)=sin(x2+y2)是关于
y
y
y的偶函数,且D关于
x
x
x轴对称,所以
∬
D
sin
(
x
2
+
y
2
)
d
x
d
y
=
2
∫
0
π
2
d
θ
∫
0
2
r
sin
r
2
=
π
2
(
1
−
cos
4
)
\iint_{D} \sin \left(x^{2}+y^{2}\right) d x d y=2 \int_{0}^{\frac{\pi}{2}} d \theta \int_{0}^{2} r \sin r^{2}=\frac{\pi}{2}(1-\cos 4)
∬Dsin(x2+y2)dxdy=2∫02πdθ∫02rsinr2=2π(1−cos4)
1.2.积分区域D关于 y y y轴对称, f ( x , y ) f(x,y) f(x,y)为D上的连续函数
定理:如果积分区域D关于
y
y
y轴对称,
f
(
x
,
y
)
f(x, y)
f(x,y)为
x
x
x的奇偶函数,则二重积分
∬
D
f
(
x
,
y
)
d
x
d
y
=
{
0
,
f
(
−
x
,
y
)
=
−
f
(
x
,
y
)
2
∬
D
f
(
x
,
y
)
d
x
d
y
,
f
(
−
x
,
y
)
=
f
(
x
,
y
)
\iint_{D} f(x, y) d x d y=\left\{\begin{array}{lll} 0 & , & f(-x, y)=-f(x, y) \\ 2 \iint_{D} f(x, y) d x d y & , & f(-x, y)=f(x, y) \end{array}\right.
∬Df(x,y)dxdy={02∬Df(x,y)dxdy,,f(−x,y)=−f(x,y)f(−x,y)=f(x,y)
其中
D
1
D_1
D1为
D
D
D在
y
y
y轴的右半面部分。
证明:若区域D对称于
y
y
y轴,对任意
P
(
x
,
y
)
∈
D
1
P(x, y) \in D_{1}
P(x,y)∈D1,对称点
P
′
(
−
x
,
y
)
∈
D
2
P^{\prime}(-x, y) \in D_{2}
P′(−x,y)∈D2,类似上述定理得证明可得
∬
D
f
(
x
,
y
)
d
x
d
y
=
{
0
,
f
(
−
x
,
y
)
=
−
f
(
x
,
y
)
2
∬
D
1
f
(
x
,
y
)
d
x
d
y
,
f
(
−
x
,
y
)
=
f
(
x
,
y
)
\iint_{D} f(x, y) d x d y=\left\{\begin{array}{ll} 0 & , f(-x, y)=-f(x, y) \\ 2 \iint_{D_{1}} f(x, y) d x d y & , f(-x, y)=f(x, y) \end{array}\right.
∬Df(x,y)dxdy={02∬D1f(x,y)dxdy,f(−x,y)=−f(x,y),f(−x,y)=f(x,y)
例题三:计算
∬
D
(
x
+
x
3
y
2
)
d
x
d
y
\iint_{D}\left(x+x^{3} y^{2}\right) d x d y
∬D(x+x3y2)dxdy,其中
D
:
x
2
+
y
2
≤
4
,
y
≥
0
D: \quad x^{2}+y^{2} \leq 4, y \geq 0
D:x2+y2≤4,y≥0
解析:
f
(
x
,
y
)
=
x
+
x
3
y
2
f
(
−
x
,
y
)
=
−
x
−
x
3
y
2
=
−
(
x
+
x
3
y
2
)
=
−
f
(
x
,
y
)
\begin{array}{c} f(x, y)=x+x^{3} y^{2} \\ f(-x, y)=-x-x^{3} y^{2}=-\left(x+x^{3} y^{2}\right)=-f(x, y) \end{array}
f(x,y)=x+x3y2f(−x,y)=−x−x3y2=−(x+x3y2)=−f(x,y)
且区域D关于
y
y
y轴对称,所以
∬
D
(
x
+
x
3
y
2
)
d
x
d
y
=
0
\iint_{D}\left(x+x^{3} y^{2}\right) d x d y=0
∬D(x+x3y2)dxdy=0
例题四:计算
∬
D
x
2
y
d
x
d
y
\iint_{D} x^{2} y d x d y
∬Dx2ydxdy,其中区域
D
:
−
1
≤
x
≤
1
,
0
≤
y
≤
1
D:-1 \leq x \leq 1,0 \leq y \leq 1
D:−1≤x≤1,0≤y≤1
解析:
f
(
x
,
y
)
=
x
2
y
f(x, y)=x^{2} y
f(x,y)=x2y是关于
x
x
x的偶函数,且区域D关于
y
y
y轴对称,所以
∬
D
x
2
y
d
x
d
y
=
2
∫
0
1
d
y
∫
0
1
x
2
y
d
x
=
2
∫
0
1
y
d
y
∫
0
1
x
2
d
x
=
1
3
\iint_{D} x^{2} y d x d y=2 \int_{0}^{1} d y \int_{0}^{1} x^{2} y d x=2 \int_{0}^{1} y d y \int_{0}^{1} x^{2} d x=\frac{1}{3}
∬Dx2ydxdy=2∫01dy∫01x2ydx=2∫01ydy∫01x2dx=31
1.3.积分区域D关于坐标区域内任意直线对称
定理:如果积分域D关于直线
y
=
a
x
+
b
y=a x+b
y=ax+b对称,则二重积分
∬
D
f
(
x
,
y
)
d
x
d
y
=
{
0
,
f
(
x
+
2
a
(
y
−
a
x
−
b
)
1
+
a
2
,
a
x
+
b
+
(
a
2
−
1
)
(
y
−
a
x
−
b
)
1
+
a
2
)
=
−
f
(
x
,
y
)
2
∬
D
1
f
(
x
,
y
)
d
x
d
y
,
f
(
x
+
2
a
(
y
−
a
x
−
b
)
1
+
a
2
,
a
x
+
b
+
(
a
2
−
1
)
(
y
−
a
x
−
b
)
1
+
a
2
)
=
f
(
x
,
y
)
\iint_{D} f(x, y) d x d y=\left\{\begin{array}{ll} 0 & , f\left(x+\frac{2 a(y-a x-b)}{1+a^{2}}, a x+b+\frac{\left(a^{2}-1\right)(y-a x-b)}{1+a^{2}}\right)=-f(x, y) \\ 2 \iint_{D_{1}} f(x, y) d x d y & , \quad f\left(x+\frac{2 a(y-a x-b)}{1+a^{2}}, a x+b+\frac{\left(a^{2}-1\right)(y-a x-b)}{1+a^{2}}\right)=f(x, y) \end{array}\right.
∬Df(x,y)dxdy=⎩⎪⎪⎨⎪⎪⎧02∬D1f(x,y)dxdy,f(x+1+a22a(y−ax−b),ax+b+1+a2(a2−1)(y−ax−b))=−f(x,y),f(x+1+a22a(y−ax−b),ax+b+1+a2(a2−1)(y−ax−b))=f(x,y)
其中
D
1
D_1
D1为
D
D
D在以直线
y
=
a
x
+
b
y=ax+b
y=ax+b为轴的右半面部分。
设区域D对称于直线
y
=
a
x
+
b
y=ax+b
y=ax+b,不妨设
a
>
0
a>0
a>0,即倾斜角
θ
\theta
θ为锐角,首先,平移坐标轴,得到坐标系
x
′
o
′
y
′
x^{\prime} o^{\prime} y^{\prime}
x′o′y′
{
x
′
=
x
+
b
a
y
′
=
y
\left\{\begin{array}{c} x^{\prime}=x+\frac{b}{a} \\ y^{\prime}=y \end{array}\right.
{x′=x+aby′=y
即
{
x
=
x
′
−
b
a
y
=
y
′
\left\{\begin{array}{c} x=x^{\prime}-\frac{b}{a} \\ y=y^{\prime} \end{array}\right.
{x=x′−aby=y′
其次,将坐标系
x
′
o
′
y
′
x^{\prime} o^{\prime} y^{\prime}
x′o′y′沿逆时针方向旋转,旋转角为
θ
(
tan
θ
=
a
)
\theta(\tan \theta=a)
θ(tanθ=a),使
x
′
x^{\prime}
x′与直线
y
=
a
x
+
b
y=ax+b
y=ax+b重合,得到新坐标系
u
O
′
v
:
u O^{\prime} v:
uO′v:
{
x
′
=
(
u
−
v
tan
θ
)
cos
θ
=
u
−
a
v
1
+
a
2
y
′
=
(
u
−
v
tan
θ
)
sin
θ
+
v
sec
θ
=
a
u
+
v
1
+
a
2
\left\{\begin{array}{l} x^{\prime}=(u-v \tan \theta) \cos \theta=\frac{u-a v}{\sqrt{1+a^{2}}} \\ y^{\prime}=(u-v \tan \theta) \sin \theta+v \sec \theta=\frac{a u+v}{\sqrt{1+a^{2}}} \end{array}\right.
{x′=(u−vtanθ)cosθ=1+a2u−avy′=(u−vtanθ)sinθ+vsecθ=1+a2au+v
根据上式,可得
{
x
=
u
−
a
v
1
+
a
2
−
b
a
y
=
a
u
+
v
1
+
a
2
\left\{\begin{array}{l} x=\frac{u-a v}{\sqrt{1+a^{2}}}-\frac{b}{a} \\ y=\frac{a u+v}{\sqrt{1+a^{2}}} \end{array}\right.
{x=1+a2u−av−aby=1+a2au+v
即
{
u
=
1
+
a
2
(
x
+
b
a
)
+
a
(
y
−
a
x
−
b
)
1
+
a
2
v
=
y
−
a
x
−
b
1
+
a
2
\left\{\begin{array}{l} u=\sqrt{1+a^{2}}\left(x+\frac{b}{a}\right)+\frac{a(y-a x-b)}{\sqrt{1+a^{2}}} \\ v=\frac{y-a x-b}{\sqrt{1+a^{2}}} \end{array}\right.
{u=1+a2(x+ab)+1+a2a(y−ax−b)v=1+a2y−ax−b
x
O
y
xOy
xOy坐标面内对称于直线
y
=
a
x
+
b
y=ax+b
y=ax+b的区域D,在新坐标系
U
O
′
V
U O^{\prime} V
UO′V内对应的区域
D
′
D^{\prime}
D′关于
u
u
u轴对称,
x
o
y
xoy
xoy面内任一点
P
(
x
,
y
)
∈
D
1
P(x, y) \in D_{1}
P(x,y)∈D1,在
u
o
′
v
u o^{\prime} v
uo′v面内对应点
P
1
(
u
,
v
)
∈
D
1
′
P_{1}(u, v) \in D_{1}^{\prime}
P1(u,v)∈D1′
u
=
1
+
a
2
(
x
+
b
a
)
+
a
(
y
−
a
x
−
b
)
1
+
a
2
,
v
=
y
−
a
x
−
b
1
+
a
2
u=\sqrt{1+a^{2}}\left(x+\frac{b}{a}\right)+\frac{a(y-a x-b)}{\sqrt{1+a^{2}}}, \quad v=\frac{y-a x-b}{\sqrt{1+a^{2}}}
u=1+a2(x+ab)+1+a2a(y−ax−b),v=1+a2y−ax−b
点
P
1
(
u
,
v
)
P_{1}(u, v)
P1(u,v)关于
u
u
u轴对称点
P
1
′
(
u
,
−
v
)
∈
D
2
′
P_{1}^{\prime}(u,-v) \in D_{2}^{\prime}
P1′(u,−v)∈D2′,
P
1
′
(
u
,
−
v
)
P_{1}^{\prime}(u,-v)
P1′(u,−v)在
x
o
y
xoy
xoy面内对应点为
P
′
(
u
−
a
(
−
v
)
1
+
a
2
−
b
a
,
a
u
+
(
−
v
)
1
+
a
2
)
∈
D
2
P^{\prime}\left(\frac{u-a(-v)}{\sqrt{1+a^{2}}}-\frac{b}{a}, \frac{a u+(-v)}{\sqrt{1+a^{2}}}\right) \in D_{2}
P′(1+a2u−a(−v)−ab,1+a2au+(−v))∈D2
将
u
,
v
u,v
u,v带入,并化简得到:
P
′
(
x
+
2
a
(
y
−
a
x
−
b
)
1
+
a
2
,
a
x
+
b
+
(
a
2
−
1
)
(
y
−
a
x
−
b
)
1
+
a
2
)
∈
D
2
P^{\prime}\left(x+\frac{2 a(y-a x-b)}{1+a^{2}}, a x+b+\frac{\left(a^{2}-1\right)(y-a x-b)}{1+a^{2}}\right) \in D_{2}
P′(x+1+a22a(y−ax−b),ax+b+1+a2(a2−1)(y−ax−b))∈D2
因此,
x
o
y
x o y
xoy面内点
P
(
x
,
y
)
∈
D
1
P(x, y) \in D_{1}
P(x,y)∈D1关于直线
y
=
a
x
+
b
y=a x+b
y=ax+b的对称点为
P
′
(
x
+
2
a
(
y
−
a
x
−
b
)
1
+
a
2
,
a
x
+
b
+
(
a
2
−
1
)
(
y
−
a
x
−
b
)
1
+
a
2
)
∈
D
2
P^{\prime}\left(x+\frac{2 a(y-a x-b)}{1+a^{2}}, a x+b+\frac{\left(a^{2}-1\right)(y-a x-b)}{1+a^{2}}\right) \in D_{2}
P′(x+1+a22a(y−ax−b),ax+b+1+a2(a2−1)(y−ax−b))∈D2
雅克比行列式为
∂
(
x
,
y
)
∂
(
u
,
v
)
=
∣
1
1
+
a
2
−
a
1
+
a
2
a
1
+
a
2
1
1
+
a
2
∣
=
1
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc} \frac{1}{\sqrt{1+a^{2}}} & \frac{-a}{\sqrt{1+a^{2}}} \\ \frac{a}{\sqrt{1+a^{2}}} & \frac{1}{\sqrt{1+a^{2}}} \end{array}\right|=1
∂(u,v)∂(x,y)=∣∣∣∣∣1+a211+a2a1+a2−a1+a21∣∣∣∣∣=1
于是
∬
D
f
(
x
,
y
)
d
x
d
y
=
∬
D
f
(
u
−
a
v
1
+
a
2
−
b
a
,
a
u
+
v
1
+
a
2
)
d
u
d
v
\iint_{D} f(x, y) d x d y=\iint_{D} f\left(\frac{u-a v}{\sqrt{1+a^{2}}}-\frac{b}{a}, \frac{a u+v}{\sqrt{1+a^{2}}}\right) d u d v
∬Df(x,y)dxdy=∬Df(1+a2u−av−ab,1+a2au+v)dudv
则可得
∬
D
1
f
(
u
−
a
v
1
+
a
2
−
b
a
,
a
u
+
v
1
+
a
2
)
d
u
d
v
=
{
0
f
(
u
+
a
v
1
+
a
2
−
b
a
,
a
u
−
v
1
+
a
2
)
=
−
f
(
u
−
a
v
1
−
a
2
−
b
a
,
a
u
+
v
1
+
a
2
)
2
∬
D
1
f
(
u
−
a
v
1
+
a
2
−
b
a
,
a
u
+
v
1
+
a
2
)
d
u
d
v
f
(
u
+
a
v
1
+
a
2
−
b
a
,
a
u
−
v
1
+
a
2
)
=
f
(
u
−
a
v
1
+
a
2
−
b
a
,
a
u
+
v
1
+
a
2
)
\begin{array}{l} \qquad \iint_{D_{1}} f\left(\frac{u-a v}{\sqrt{1+a^{2}}}-\frac{b}{a}, \frac{a u+v}{\sqrt{1+a^{2}}}\right) d u d v \\ =\left\{\begin{array}{ll} 0 & f\left(\frac{u+a v}{\sqrt{1+a^{2}}}-\frac{b}{a}, \frac{a u-v}{\sqrt{1+a^{2}}}\right)=-f\left(\frac{u-a v}{\sqrt{1-a^{2}}}-\frac{b}{a}, \frac{a u+v}{\sqrt{1+a^{2}}}\right) \\ 2 \iint_{D_{1}} f\left(\frac{u-a v}{\sqrt{1+a^{2}}}-\frac{b}{a}, \frac{a u+v}{\sqrt{1+a^{2}}}\right) d u d v & f\left(\frac{u+a v}{\sqrt{1+a^{2}}}-\frac{b}{a}, \frac{a u-v}{\sqrt{1+a^{2}}}\right)=f\left(\frac{u-a v}{\sqrt{1+a^{2}}}-\frac{b}{a}, \frac{a u+v}{\sqrt{1+a^{2}}}\right) \end{array}\right. \end{array}
∬D1f(1+a2u−av−ab,1+a2au+v)dudv=⎩⎨⎧02∬D1f(1+a2u−av−ab,1+a2au+v)dudvf(1+a2u+av−ab,1+a2au−v)=−f(1−a2u−av−ab,1+a2au+v)f(1+a2u+av−ab,1+a2au−v)=f(1+a2u−av−ab,1+a2au+v)
即
∬
D
f
(
x
,
y
)
d
x
d
y
=
{
0
,
f
(
x
+
2
a
(
y
−
a
x
−
b
)
1
+
a
2
,
a
x
+
b
+
(
a
2
−
1
)
(
y
−
a
x
−
b
)
1
+
a
2
)
=
−
f
(
x
,
y
)
2
∭
D
1
f
(
x
,
y
)
d
x
d
y
,
f
(
x
+
2
a
(
y
−
a
x
−
b
)
1
+
a
2
,
a
x
+
b
+
(
a
2
−
1
)
(
y
−
a
x
−
b
)
1
+
a
2
)
=
f
(
x
,
y
)
\iint_{D} f(x, y) d x d y=\left\{\begin{array}{ll} 0 & , f\left(x+\frac{2 a(y-a x-b)}{1+a^{2}}, a x+b+\frac{\left(a^{2}-1\right)(y-a x-b)}{1+a^{2}}\right)=-f(x, y) \\ 2 \iiint_{D_{1}} f(x, y) d x d y & , f\left(x+\frac{2 a(y-a x-b)}{1+a^{2}}, a x+b+\frac{\left(a^{2}-1\right)(y-a x-b)}{1+a^{2}}\right)=f(x, y) \end{array}\right.
∬Df(x,y)dxdy=⎩⎪⎪⎨⎪⎪⎧02∭D1f(x,y)dxdy,f(x+1+a22a(y−ax−b),ax+b+1+a2(a2−1)(y−ax−b))=−f(x,y),f(x+1+a22a(y−ax−b),ax+b+1+a2(a2−1)(y−ax−b))=f(x,y)
推论一:如果积分域D关于直线
y
=
x
y=x
y=x对称,则二重积分
∬
D
f
(
x
,
y
)
d
x
d
y
=
∬
D
f
(
y
,
x
)
d
x
d
y
\iint_{D} f(x, y) d x d y=\iint_{D} f(y, x) d x d y
∬Df(x,y)dxdy=∬Df(y,x)dxdy
例题一:设
f
(
x
)
f(x)
f(x)为恒正的连续函数,计算积分
∬
x
2
+
y
2
≤
r
2
a
f
(
x
)
+
b
f
(
y
)
f
(
x
)
+
f
(
y
)
d
x
d
y
\iint_{x^{2}+y^{2} \leq r^{2}} \frac{a f(x)+b f(y)}{f(x)+f(y)} d x d y
∬x2+y2≤r2f(x)+f(y)af(x)+bf(y)dxdy
解析:由于积分区域
x
2
+
y
2
≤
r
2
x^{2}+y^{2} \leq r^{2}
x2+y2≤r2关于直线
y
=
x
y=x
y=x对称,可得
∬
x
2
+
y
2
≤
r
2
a
f
(
x
)
+
b
f
(
y
)
f
(
x
)
+
f
(
y
)
d
x
d
y
=
∬
x
2
+
y
2
≤
r
2
a
f
(
y
)
+
b
f
(
x
)
f
(
y
)
+
f
(
x
)
d
x
d
y
\iint_{x^{2}+y^{2} \leq r^{2}} \frac{a f(x)+b f(y)}{f(x)+f(y)} d x d y=\iint_{x^{2}+y^{2} \leq r^{2}} \frac{a f(y)+b f(x)}{f(y)+f(x)} d x d y
∬x2+y2≤r2f(x)+f(y)af(x)+bf(y)dxdy=∬x2+y2≤r2f(y)+f(x)af(y)+bf(x)dxdy
于是
2
∬
x
2
+
y
2
≤
r
2
a
f
(
x
)
+
b
f
(
y
)
f
(
x
)
+
f
(
y
)
d
x
d
y
=
∬
x
2
+
y
2
≤
r
2
a
f
(
x
)
+
b
f
(
y
)
f
(
x
)
+
f
(
y
)
d
x
d
y
+
∬
x
2
+
y
2
≤
r
2
a
f
(
y
)
+
b
f
(
x
)
f
(
y
)
+
f
(
x
)
d
x
d
y
=
∬
x
2
+
y
2
≤
r
2
(
a
+
b
)
d
x
d
y
=
π
(
a
+
b
)
r
2
\begin{aligned} & 2 \iint_{x^{2}+y^{2} \leq r^{2}} \frac{a f(x)+b f(y)}{f(x)+f(y)} d x d y \\ =& \iint_{x^{2}+y^{2} \leq r^{2}} \frac{a f(x)+b f(y)}{f(x)+f(y)} d x d y+\iint_{x^{2}+y^{2} \leq r^{2}} \frac{a f(y)+b f(x)}{f(y)+f(x)} d x d y \\ =& \iint_{x^{2}+y^{2} \leq r^{2}}(a+b) d x d y=\pi(a+b) r^{2} \end{aligned}
==2∬x2+y2≤r2f(x)+f(y)af(x)+bf(y)dxdy∬x2+y2≤r2f(x)+f(y)af(x)+bf(y)dxdy+∬x2+y2≤r2f(y)+f(x)af(y)+bf(x)dxdy∬x2+y2≤r2(a+b)dxdy=π(a+b)r2
故
∬
x
2
+
y
2
≤
r
2
a
f
(
x
)
+
b
f
(
y
)
f
(
x
)
+
f
(
y
)
d
x
d
y
=
π
2
(
a
+
b
)
r
2
\iint_{x^{2}+y^{2} \leq r^{2}} \frac{a f(x)+b f(y)}{f(x)+f(y)} d x d y=\frac{\pi}{2}(a+b) r^{2}
∬x2+y2≤r2f(x)+f(y)af(x)+bf(y)dxdy=2π(a+b)r2
推论二:若积分区域关于直线
y
=
−
x
y=-x
y=−x对称且满足
f
(
−
x
,
−
y
)
=
−
f
(
x
,
y
)
f(-x,-y)=-f(x, y)
f(−x,−y)=−f(x,y),则有
∬
D
f
(
x
,
y
)
d
x
d
y
=
0
\iint_{D} f(x, y) d x d y=0
∬Df(x,y)dxdy=0
或满足
f
(
−
x
,
−
y
)
=
f
(
x
,
y
)
f(-x,-y)=f(x, y)
f(−x,−y)=f(x,y),则有
∬
D
f
(
x
,
y
)
d
x
d
y
=
2
∬
D
1
f
(
x
,
y
)
d
x
d
y
\iint_{D} f(x, y) d x d y=2 \iint_{D_{1}} f(x, y) d x d y
∬Df(x,y)dxdy=2∬D1f(x,y)dxdy
1.4.积分区域D关于坐标原点对称
如果积分区域D关于原点对称,
f
(
x
,
y
)
f(x,y)
f(x,y)同时为
x
,
y
x,y
x,y的奇偶函数,则二重积分
∬
D
f
(
x
,
y
)
d
x
d
y
=
{
0
f
(
−
x
,
−
y
)
=
−
f
(
x
,
y
)
2
∬
D
1
f
(
x
,
y
)
d
x
d
y
,
f
(
−
x
,
−
y
)
=
f
(
x
,
y
)
\iint_{D} f(x, y) d x d y=\left\{\begin{array}{ll} 0 & f(-x,-y)=-f(x, y) \\ 2 \iint_{D_{1}} f(x, y) d x d y, & f(-x,-y)=f(x, y) \end{array}\right.
∬Df(x,y)dxdy={02∬D1f(x,y)dxdy,f(−x,−y)=−f(x,y)f(−x,−y)=f(x,y)
其中
D
1
D_1
D1为
D
D
D的上半面部分
证明:若区域对称于原点,对任意
P
(
x
,
y
)
∈
D
1
P(x, y) \in D_{1}
P(x,y)∈D1,对称点
P
′
(
−
x
,
−
y
)
∈
D
2
P^{\prime}(-x,-y) \in D_{2}
P′(−x,−y)∈D2,
D
1
=
{
ψ
(
x
)
≤
y
≤
φ
(
x
)
,
a
≤
x
≤
b
}
,
D
2
=
{
−
φ
(
−
x
)
≤
y
≤
−
ψ
(
−
x
)
,
−
b
≤
x
≤
−
a
}
D_{1}=\{\psi(x) \leq y \leq \varphi(x), \quad a \leq x \leq b\}, \quad D_{2}=\{-\varphi(-x) \leq y \leq-\psi(-x),-b \leq x \leq-a\}
D1={ψ(x)≤y≤φ(x),a≤x≤b},D2={−φ(−x)≤y≤−ψ(−x),−b≤x≤−a},令
{
x
=
−
u
y
=
−
v
\left\{\begin{array}{l} x=-u \\ y=-v \end{array}\right.
{x=−uy=−v
则区域
D
2
D_2
D2变化为
u
O
v
u O v
uOv坐标平面内区域
D
1
=
{
ψ
(
x
)
≤
y
≤
φ
(
x
)
,
a
≤
x
≤
b
}
D_{1}=\{\psi(x) \leq y \leq \varphi(x), \quad a \leq x \leq b\}
D1={ψ(x)≤y≤φ(x),a≤x≤b},雅克比行列式
∂
(
x
,
y
)
∂
(
u
,
v
)
=
∣
−
1
0
0
−
1
∣
=
1
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right|=1
∂(u,v)∂(x,y)=∣∣∣∣−100−1∣∣∣∣=1
所以
∬
D
2
f
(
x
,
y
)
d
x
d
y
=
∬
D
1
f
(
−
u
,
−
v
)
d
u
d
v
=
∬
D
1
f
(
−
x
,
−
y
)
d
x
d
y
\iint_{D_{2}} f(x, y) d x d y=\iint_{D_{1}} f(-u,-v) d u d v=\iint_{D_{1}} f(-x,-y) d x d y
∬D2f(x,y)dxdy=∬D1f(−u,−v)dudv=∬D1f(−x,−y)dxdy
=
{
−
∬
D
1
f
(
x
,
y
)
d
x
d
y
,
f
(
−
x
,
−
y
)
=
−
f
(
x
,
y
)
∬
D
1
f
(
x
,
y
)
d
x
d
y
,
f
(
−
x
,
−
y
)
=
f
(
x
,
y
)
=\left\{\begin{array}{ll} -\iint_{D_{1}} f(x, y) d x d y & , f(-x,-y)=-f(x, y) \\ \iint_{D_{1}} f(x, y) d x d y & , f(-x,-y)=f(x, y) \end{array}\right.
={−∬D1f(x,y)dxdy∬D1f(x,y)dxdy,f(−x,−y)=−f(x,y),f(−x,−y)=f(x,y)
代入
∬
D
f
(
x
,
y
)
d
x
d
y
=
∬
D
1
f
(
x
,
y
)
d
x
d
y
+
∬
D
2
f
(
x
,
y
)
d
x
d
y
\iint_{D} f(x, y) d x d y=\iint_{D_{1}} f(x, y) d x d y+\iint_{D_{2}} f(x, y) d x d y
∬Df(x,y)dxdy=∬D1f(x,y)dxdy+∬D2f(x,y)dxdy
得
∬
D
f
(
x
,
y
)
d
x
d
y
=
{
0
,
若
f
(
−
x
,
−
y
)
=
−
f
(
x
,
y
)
2
∬
D
1
f
(
x
,
y
)
d
x
d
y
,
若
f
(
−
x
,
−
y
)
=
f
(
x
,
y
)
\iint_{D} f(x, y) d x d y=\left\{\begin{array}{ll} 0 & , \quad \text { 若 } f(-x,-y)=-f(x, y) \\ 2 \iint_{D_{1}} f(x, y) d x d y & , 若 f(-x,-y)=f(x, y) \end{array}\right.
∬Df(x,y)dxdy={02∬D1f(x,y)dxdy, 若 f(−x,−y)=−f(x,y),若f(−x,−y)=f(x,y)