行列式计算方法总结

行列式计算方法

在这里插入图片描述

1.箭型行列式

最常见最常用的行列式,特征很好辨识,必须掌握,请看下例:

e g : D n = ∣ x 1 1 1 . . . 1 1 x 2 1 x 3 . . . . . . 1 . . . x n ∣ ( 空 白 处 都 为 0 ) eg:D_n= \left|\begin{array}{cccc} x_1&1&1 &... &1\\ 1&x_2&&&\\ 1&&x_3\\ ...&&&...\\ 1&&&...&x_n \end{array}\right|(空白处都为0) eg:Dn=x111...11x21x3.........1xn(0)

S o l u t i o n Solution Solution: 把第 i i i列乘以 − 1 x i , i = 2... n -\frac{1}{x_i},i=2...n xi1,i=2...n再加到第一列

得:

D n = ∣ x 1 − 1 x 2 − . . . − 1 x n 1 1 . . . 1 0 x 2 0 x 3 . . . . . . 0 . . . x n ∣ D_n= \left|\begin{array}{cccc} x_1-\frac{1}{x_2}-...-\frac{1}{x_n}&1&1 &... &1\\ 0&x_2&&&\\ 0&&x_3\\ ...&&&...\\ 0&&&...&x_n \end{array}\right| Dn=x1x21...xn100...01x21x3.........1xn

所以:

D n = ∏ i = 2 n x i ( x 1 − ∑ i = 2 n 1 x i ) D_n=\prod_{i=2}^{n}x_i(x_1-\sum_{i=2}^{n}\frac{1}{x_i}) Dn=i=2nxi(x1i=2nxi1)

例题一
a 0 , a 1 , ⋯   , a n a_{0}, a_{1}, \cdots, a_{n} a0,a1,,an,计算 n + 1 n+1 n+1阶行列式
D = ∣ a 0 1 1 ⋯ 1 1 1 a 1 0 ⋯ 0 0 1 0 a 2 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 1 0 0 ⋯ a n − 1 0 1 0 0 ⋯ 0 a n ∣ D=\left|\begin{array}{cccccc} a_{0} & 1 & 1 & \cdots & 1 & 1 \\ 1 & a_{1} & 0 & \cdots & 0 & 0 \\ 1 & 0 & a_{2} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 1 & 0 & 0 & \cdots & a_{n-1} & 0 \\ 1 & 0 & 0 & \cdots & 0 & a_{n} \end{array}\right| D=a011111a100010a200100an101000an

解析:将第 j j j列乘 − 1 a j − 1 -\frac{1}{a_{j-1}} aj11加到第一列 ( j = 2 , ⋯   , n + 1 ) (j=2, \cdots, n+1) (j=2,,n+1),得
D = ∣ a 0 − ∑ i = 1 n 1 a i 1 1 ⋯ 1 1 0 a 1 0 ⋯ 0 0 0 0 a 2 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ a n − 1 0 0 0 0 ⋯ 0 a n ∣ = ( a 0 − ∑ i = 1 n 1 a i ) a 1 a 2 ⋯ a n \begin{aligned} D &=\left|\begin{array}{ccccccc} a_{0}- & \sum_{i=1}^{n} \frac{1}{a_{i}} & 1 & 1 & \cdots & 1 & 1 \\ 0 & a_{1} & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_{2} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{n-1} & 0 \\ 0 & 0 & 0 & \cdots & 0 & a_{n} \end{array}\right| \\ =&\left(a_{0}-\sum_{i=1}^{n} \frac{1}{a_{i}}\right) a_{1} a_{2} \cdots a_{n} \end{aligned} D==a00000i=1nai1a100010a200100an101000an1(a0i=1nai1)a1a2an

2. 两三角型行列式
  1. 特征为对角线上方元素均为 a a a ,下方元素均为 b b b
  • a = b a=b a=b 时可化为箭型行列式计算,当 a ≠ b a\not=b a=b 时采用拆行法计算,请看下面两例

e g 1 ( a = b ) : D n = ∣ x 1 b b . . . b b x 2 b . . . b b b x 3 . . . b . . . . . . . . . . . . . . . b b b . . . x n ∣ eg1(a=b):D_n=\left|\begin{array}{cccc} x_1&b&b &... &b\\ b&x_2&b&...&b\\ b&b&x_3&...&b\\ ...&...&...&...&...\\ b&b&b&...&x_n \end{array}\right| eg1(a=b):Dn=x1bb...bbx2b...bbbx3...b...............bbb...xn

S o l u t i o n Solution Solution: 将第一行元素乘以 ( − 1 ) (-1) (1)加到第 i , i = 2... n i,i=2...n i,i=2...n

得:
D n = ∣ x 1 b b . . . b b − x 1 x 2 − b 0 . . . 0 b − x 1 0 x 3 − b . . . 0 . . . . . . . . . . . . . . . b − x 1 0 0 . . . x n − b ∣ D_n=\left|\begin{array}{cccc} x_1&b&b &... &b\\ b-x_1&x_2-b&0&...&0\\ b-x_1&0&x_3-b&...&0\\ ...&...&...&...&...\\ b-x_1&0&0&...&x_n-b \end{array}\right| Dn=x1bx1bx1...bx1bx2b0...0b0x3b...0...............b00...xnb

即化成了箭型行列式,所以:

D n = [ ∏ i = 2 n ( x i − b ) ] × [ x 1 − b ( b − x 1 ) ∑ i = 2 n 1 x i − b ] D_n=[\prod_{i=2}^{n}(x_i-b)]\times[x_1-b(b-x_1)\sum_{i=2}^{n}\frac{1}{x_i-b}] Dn=[i=2n(xib)]×[x1b(bx1)i=2nxib1]

e g 2 ( a ≠ b ) : D n = ∣ x 1 a a . . . a b x 2 a . . . a b b x 3 . . . a . . . . . . . . . . . . . . . b b b . . . x n ∣ eg2(a\not=b):D_n=\left|\begin{array}{cccc} x_1&a&a &... &a\\ b&x_2&a&...&a\\ b&b&x_3&...&a\\ ...&...&...&...&...\\ b&b&b&...&x_n \end{array}\right| eg2(a=b):Dn=x1bb...bax2b...baax3...b...............aaa...xn

S o l u t i o n Solution Solution: 采用拆行法,目的是为了降阶

D n = ∣ x 1 a a . . . a + 0 b x 2 a . . . a + 0 b b x 3 . . . a + 0 . . . . . . . . . . . . . . . b b b . . . x n + b − b ∣ D_n=\left|\begin{array}{cccc} x_1&a&a &... &a+0\\ b&x_2&a&...&a+0\\ b&b&x_3&...&a+0\\ ...&...&...&...&...\\ b&b&b&...&x_n+b-b \end{array}\right| Dn=x1bb...bax2b...baax3...b...............a+0a+0a+0...xn+bb

D n = ∣ x 1 a a . . . a b x 2 a . . . a b b x 3 . . . a . . . . . . . . . . . . . . . b b b . . . b ∣ ( ∗ ) + ∣ x 1 a a . . . 0 b x 2 a . . . 0 b b x 3 . . . 0 . . . . . . . . . . . . . . . b b b . . . x n − b ∣ D_n=\left|\begin{array}{cccc} x_1&a&a &... &a\\ b&x_2&a&...&a\\ b&b&x_3&...&a\\ ...&...&...&...&...\\ b&b&b&...&b \end{array}\right|_{(*)}+\left|\begin{array}{cccc} x_1&a&a &... &0\\ b&x_2&a&...&0\\ b&b&x_3&...&0\\ ...&...&...&...&...\\ b&b&b&...&x_n-b \end{array}\right| Dn=x1bb...bax2b...baax3...b...............aaa...b()+x1bb...bax2b...baax3...b...............000...xnb

将最后一列元素乘以 ( − 1 ) (-1) (1)加到第 i , i = 1... n − 1 i,i=1...n-1 ii=1...n1列,得:

D n = ∣ x 1 − a 0 0 . . . a b − a x 2 − a 0 . . . a b − a b − a x 3 − a . . . a . . . . . . . . . . . . . . . 0 0 0 . . . b ∣ + ( x n − b ) D n − 1 D_n=\left|\begin{array}{cccc} x_1-a&0&0 &... &a\\ b-a&x_2-a&0&...&a\\ b-a&b-a&x_3-a&...&a\\ ...&...&...&...&...\\ 0&0&0&...&b \end{array}\right|+(x_n-b)D_{n-1} Dn=x1ababa...00x2aba...000x3a...0...............aaa...b+(xnb)Dn1

所以:
D n = b ∏ i = 1 n − 1 ( x i − a ) + ( x n − b ) D n − 1 D_n=b\prod_{i=1}^{n-1}(x_i-a)+(x_n-b)D_{n-1} Dn=bi=1n1(xia)+(xnb)Dn1

再由行列式转置不变性得到:

D n = a ∏ i = 1 n − 1 ( x i − b ) + ( x n − a ) D n − 1 D_n=a\prod_{i=1}^{n-1}(x_i-b)+(x_n-a)D_{n-1} Dn=ai=1n1(xib)+(xna)Dn1

联立上述两式 ,得通式:

D n = 1 a − b [ a ∏ i = 1 n ( x i − b ) − b ∏ j = 1 n ( x j − a ) ] D_n=\frac{1}{a-b}[a\prod_{i=1}^{n}(x_i-b)-b\prod_{j=1}^{n}(x_j-a)] Dn=ab1[ai=1n(xib)bj=1n(xja)]

例题一:计算 n ( n ⩾ 2 ) n(n \geqslant 2) n(n2)的行列式
D n = ∣ 1 3 3 ⋯ 3 3 2 3 ⋯ 3 3 3 3 ⋯ 3 ⋮ ⋮ ⋮ ⋮ 3 3 3 ⋯ n ∣ D_{n}=\left|\begin{array}{ccccc} 1 & 3 & 3 & \cdots & 3 \\ 3 & 2 & 3 & \cdots & 3 \\ 3 & 3 & 3 & \cdots & 3 \\ \vdots & \vdots & \vdots & & \vdots \\ 3 & 3 & 3 & \cdots & n \end{array}\right| Dn=133332333333333n

解析:当 n = 2 n=2 n=2时, D 2 = ∣ 1 3 3 2 ∣ = − 7 D_{2}=\left|\begin{array}{ll}1 & 3 \\ 3 & 2\end{array}\right|=-7 D2=1332=7
n ⩾ 3 n \geqslant 3 n3时,将 D n D_n Dn的第三行乘 − 1 -1 1加到其余各行,得
D n = ∣ − 2 0 0 0 ⋯ 0 0 − 1 0 0 ⋯ 0 3 3 3 3 ⋯ 3 0 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 0 ⋯ n − 3 ∣ D_{n}=\left|\begin{array}{cccccc} -2 & 0 & 0 & 0 & \cdots & 0 \\ 0 & -1 & 0 & 0 & \cdots & 0 \\ 3 & 3 & 3 & 3 & \cdots & 3 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \cdots & n-3 \end{array}\right| Dn=203000130000300003100030n3
再将第 3 3 3列乘 − 1 -1 1加到其余各列,得
D n = ∣ − 2 0 0 0 ⋯ 0 0 − 1 0 0 ⋯ 0 0 0 3 0 ⋯ 0 0 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 0 ⋯ n − 3 ∣ = ( − 2 ) ( − 1 ) ⋅ 3 ⋅ ( n − 3 ) ! = 6 ⋅ ( n − 3 ) ! \begin{aligned} &D_{n}=\left|\begin{array}{cccccc} -2 & 0 & 0 & 0 & \cdots & 0 \\ 0 & -1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 3 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \cdots & n-3 \end{array}\right|\\ &=(-2)(-1) \cdot 3 \cdot(n-3) !=6 \cdot(n-3) ! \end{aligned} Dn=200000100000300000100000n3=(2)(1)3(n3)!=6(n3)!

注解:考虑到第三行得特殊性本题就可以解决了,另外需要考虑 n = 2 n=2 n=2得特殊情形。如果仍旧从第一列去化简,本题是很难得到结果的。

  • 通过适当变换可以化为两三角型行列式的,描述不如大家自己看例子揣摩,也很容易理解的,请看下例

e g 3 : D n = ∣ d b b . . . b c x a . . . a c a x . . . a . . . . . . . . . . . . . . . c a a . . . x ∣ eg3:D_n=\left|\begin{array}{cccc} d&b&b &... &b\\ c&x&a&...&a\\ c&a&x&...&a\\ ...&...&...&...&...\\ c&a&a&...&x \end{array}\right| eg3:Dn=dcc...cbxa...abax...a...............baa...x

S o l u t i o n Solution Solution: 将第一行乘上 a b \frac{a}{b} ba ,第一列乘上 a c \frac{a}{c} ca ,得:

D n = b c a 2 ∣ a 2 d b c a a . . . a a x a . . . a a a x . . . a . . . . . . . . . . . . . . . a a a . . . x ∣ D_n=\frac{bc}{a^2}\left|\begin{array}{cccc} \frac{a^2d}{bc}&a&a &... &a\\ a&x&a&...&a\\ a&a&x&...&a\\ ...&...&...&...&...\\ a&a&a&...&x \end{array}\right| Dn=a2bcbca2daa...aaxa...aaax...a...............aaa...x

即化成了两三角型行列式

  1. 一些每行上有公因子但是无法向上式那样在保持行列式不变的基础上能提出公因子的,采用**升阶法,**请看下例

e g 4 : D n = ∣ 1 + x 1 2 x 1 x 2 x 1 x 3 . . . x 1 x n x 2 x 1 1 + x 2 2 x 2 x 3 . . . x 2 x n x 3 x 1 x 3 x 2 1 + x 3 2 . . . x 3 x n . . . . . . . . . . . . . . . x n x 1 x n x 2 x n x 3 . . . 1 + x n 2 ∣ eg4:D_n=\left|\begin{array}{cccc} 1+x_{1}^2&x_1x_2&x_1x_3 &... &x_1x_n\\ x_2x_1&1+x_{2}^2&x_2x_3&...&x_2x_n\\ x_3x_1&x_3x_2&1+x_{3}^2&...&x_3x_n\\ ...&...&...&...&...\\ x_nx_1&x_nx_2&x_nx_3&...&1+x_{n}^2 \end{array}\right| eg4:Dn=1+x12x2x1x3x1...xnx1x1x21+x22x3x2...xnx2x1x3x2x31+x32...xnx3...............x1xnx2xnx3xn...1+xn2

S o l u t i o n Solution Solution: 加边升阶,得:

D n = ∣ 1 x 1 x 2 x 3 . . . x n 0 1 + x 1 2 x 1 x 2 x 1 x 3 . . . x 1 x n 0 x 2 x 1 1 + x 2 2 x 2 x 3 . . . x 2 x n 0 x 3 x 1 x 3 x 2 1 + x 3 2 . . . x 3 x n 0 . . . . . . . . . . . . . . . 0 x n x 1 x n x 2 x n x 3 . . . 1 + x n 2 ∣ D_n=\left|\begin{array}{cccc} 1&x_1&x_2&x_3&...&x_n\\ 0&1+x_{1}^2&x_1x_2&x_1x_3 &... &x_1x_n\\ 0&x_2x_1&1+x_{2}^2&x_2x_3&...&x_2x_n\\ 0&x_3x_1&x_3x_2&1+x_{3}^2&...&x_3x_n\\ 0&...&...&...&...&...\\ 0&x_nx_1&x_nx_2&x_nx_3&...&1+x_{n}^2 \end{array}\right| Dn=100000x11+x12x2x1x3x1...xnx1x2x1x21+x22x3x2...xnx2x3x1x3x2x31+x32...xnx3..................xnx1xnx2xnx3xn...1+xn2

再将第 i , i = 2... n + 1 i,i=2...n+1 i,i=2...n+1 都减去第一行的 x i , i = 1... n x_i,i=1...n xii=1...n 倍,得:

D n = ∣ 1 x 1 x 2 x 3 . . . x n − x 1 1 0 0 . . . 0 − x 2 0 1 0 . . . 0 − x 3 0 0 1 . . . 0 0 . . . . . . . . . . . . . . . − x n 0 0 0 . . . 1 ∣ D_n=\left|\begin{array}{cccc} 1&x_1&x_2&x_3&...&x_n\\ -x_1&1&0&0 &... &0\\ -x_2&0&1&0&...&0\\ -x_3&0&0&1&...&0\\ 0&...&...&...&...&...\\ -x_n&0&0&0&...&1 \end{array}\right| Dn=1x1x2x30xnx1100...0x2010...0x3001...0..................xn000...1

即又化成了箭型行列式,可得通式:

D n = 1 + ∑ i = 1 n x i 2 D_n=1+\sum_{i=1}^{n}x_{i}^{2} Dn=1+i=1nxi2

3.两条线型行列式

特征是除了主(次)对角线或与其相邻得一条斜线所组成的任意一条线加四个顶点中的某个顶点外,其他元素均为 0 0 0,这类行列式可以直接展开降阶。这段描述有点繁琐,但其实也并不复杂,请看下例理解

e g 3 : D n = ∣ a 1 b 1 . . . a 2 b 2 . . . a 3 . . . . . . a n − 1 b n − 1 b n . . . a n ∣ ( 空 白 处 都 为 0 ) eg3:D_n=\left|\begin{array}{cccc} a_1&b_1& &... &\\ &a_2&b_2&...&\\ &&a_3&...&\\ &&&\\ &&...&a_{n-1}&b_{n-1} \\ b_n&&...&&a_n \end{array}\right| (空白处都为0) eg3:Dn=a1bnb1a2b2a3...............an1bn1an(0)

S o l u t i o n Solution Solution: 按照第一列两个非 0 0 0元素拉普拉斯展开即可

D n = ∏ i = 1 n a i + ( − 1 ) n + 1 ∏ i = 1 n b i D_n=\prod_{i=1}^{n}a_i+(-1)^{n+1}\prod_{i=1}^{n}b_i Dn=i=1nai+(1)n+1i=1nbi

4.范德蒙德型行列式

范德蒙德行列式大家应该熟悉,而范德蒙德型行列式的特征就是有逐行(列)元素按幂递增(减),可以将其转化为范德蒙德行列式来计算,请看下例

e g : D n = ∣ a 1 n a 1 n − 1 b 1 . . . a 1 b 1 n − 1 b 1 n a 2 n a 2 n − 1 b 2 . . . a 2 b 2 n − 1 b 2 n . . . . . . . . . . . . . . . a n n a n n − 1 b n . . . a n b n n − 1 b n n a n + 1 n a n + 1 n − 1 b n + 1 . . . a n + 1 b n + 1 n − 1 b n + 1 n ∣ eg:D_n=\left|\begin{array}{cccc} a_{1}^n& a_{1}^{n-1}b_1&... &a_1b_1^{n-1}&b_1^n\\ a_{2}^n&a_{2}^{n-1}b_2&...&a_2b_2^{n-1}&b_2^n\\ ...&...&...&...&...\\ a_{n}^n&a_{n}^{n-1}b_n&...&a_nb_n^{n-1}&b_n^n\\ a_{n+1}^n&a_{n+1}^{n-1}b_{n+1}&...&a_{n+1}b_{n+1}^{n-1}&b_{n+1}^n \end{array}\right| eg:Dn=a1na2n...annan+1na1n1b1a2n1b2...ann1bnan+1n1bn+1...............a1b1n1a2b2n1...anbnn1an+1bn+1n1b1nb2n...bnnbn+1n

S o l u t i o n Solution Solution: 将每行都提出 a i n , i = 1... n + 1 a_i^{n},i=1...n+1 ain,i=1...n+1倍,得:

D n = ∏ i = 1 n + 1 a i n ∣ 1 b 1 a 1 . . . ( b 1 a 1 ) n − 1 ( b 1 a 1 ) n 1 b 2 a 2 . . . ( b 2 a 2 ) n − 1 ( b 2 a 2 ) n . . . . . . . . . . . . . . . 1 b n a n . . . ( b n a n ) n − 1 ( b n a n ) n 1 b n + 1 a n + 1 . . . ( b n + 1 a n + 1 ) n − 1 ( b n + 1 a n + 1 ) n ∣ D_n=\prod_{i=1}^{n+1}a_i^n\left|\begin{array}{cccc} 1& \frac{b_1}{a_1}&... &(\frac{b_1}{a_1})^{n-1}&(\frac{b_1}{a_1})^{n}\\ 1&\frac{b_2}{a_2}&...&(\frac{b_2}{a_2})^{n-1}&(\frac{b_2}{a_2})^{n}\\ ...&...&...&...&...\\ 1&\frac{b_n}{a_n}&...&(\frac{b_n}{a_n})^{n-1}&(\frac{b_n}{a_n})^{n}\\ 1&\frac{b_{n+1}}{a_{n+1}}&...&(\frac{b_{n+1}}{a_{n+1}})^{n-1}&(\frac{b_{n+1}}{a_{n+1}})^{n} \end{array}\right| Dn=i=1n+1ain11...11a1b1a2b2...anbnan+1bn+1...............(a1b1)n1(a2b2)n1...(anbn)n1(an+1bn+1)n1(a1b1)n(a2b2)n...(anbn)n(an+1bn+1)n

上式即为范德蒙德行列式,所以通式为:

D n = ∏ 1 ≤ i < j ≤ n + 1 ( a i b j − b i a j ) a i a j D_n=\prod_{1\le i<j\le n+1}\frac{(a_ib_j-b_ia_j)}{a_ia_j} Dn=1i<jn+1aiaj(aibjbiaj)

5. H e s s e n b e r g Hessenberg Hessenberg型行列式

特征为除了主(次)对角线及与其相邻的斜线,再加上第一行(列)或第 n n n行(列)外,其余元素均为 0 0 0。这类行列式有点像前面说的两条线型行列式,但是还是有一点区别的。这类行列式都用累加消点法,即通常将某一行(列)都化简到只有一个非 0 0 0元素,以便于降阶计算,请看下例

e g : D n = ∣ 1 2 3 . . . n − 1 n 1 − 1 2 − 2 . . . . . . . . . . . . . . . . . . . . . n − 2 2 − n . . . n − 1 1 − n ∣ eg:D_n= \left|\begin{array}{cccc} 1&2&3 &... &n-1&n\\ 1&-1&&&&\\ &2&-2&...\\ ...&...&...&...&...&...\\ &&&n-2&2-n&\\ &&&...&n-1&1-n \end{array}\right| eg:Dn=11...212...32............n2...n1...2nn1n...1n

S o l u t i o n Solution Solution: 将各列都加到第一列,得到:

D n = ∣ n ( n + 1 ) 2 2 3 . . . n − 1 n 0 − 1 0 2 − 2 . . . . . . . . . . . . . . . . . . . . . 0 n − 2 2 − n 0 . . . n − 1 1 − n ∣ D_n= \left|\begin{array}{cccc} \frac{n(n+1)}{2}&2&3 &... &n-1&n\\ 0&-1&&&&\\ 0&2&-2&...\\ ...&...&...&...&...&...\\ 0&&&n-2&2-n&\\ 0&&&...&n-1&1-n \end{array}\right| Dn=2n(n+1)00...00212...32............n2...n1...2nn1n...1n

降阶之后再重复上述步骤即可得到通式:

D n = ( − 1 ) n − 1 ( n + 1 ) ! 2 D_n=(-1)^{n-1}\frac{(n+1)!}{2} Dn=(1)n12(n+1)!

注:需要说明的是,上面举的例子比较容易看出如何实施累加消点法就可以实现将某一行(列)都化简到只有一个非 0 0 0元素从而达到降阶的目的,但是还有很多 H e s s e n b e r g Hessenberg Hessenberg型行列式并不这么容易就做到,还需要大家找找技巧稍微变换一下,只要始终记得你要用累加消点法来消元来降阶就可以了。

例题一:计算 n + 1 n+1 n+1阶行列式
D = ∣ − a 1 a 1 0 ⋯ 0 0 0 − a 2 a 2 ⋯ 0 0 0 0 − a 3 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ − a n a n 1 1 1 ⋯ 1 1 ∣ D=\left|\begin{array}{cccccc}-a_{1} & a_{1} & 0 & \cdots & 0 & 0 \\ 0 & -a_{2} & a_{2} & \cdots & 0 & 0 \\ 0 & 0 & -a_{3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -a_{n} & a_{n} \\ 1 & 1 & 1 & \cdots & 1 & 1\end{array}\right| D=a10001a1a20010a2a301000an1000an1

解析:该行列式前 n n n行元素之和均为零,故可将各列均加到第一列上,得
D = ∣ 0 a 1 0 ⋯ 0 0 0 − a 2 a 2 ⋯ 0 0 0 0 − a 3 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ − a n a n n + 1 1 1 ⋯ 1 1 ∣ D=\left|\begin{array}{cccccc} 0 & a_{1} & 0 & \cdots & 0 & 0 \\ 0 & -a_{2} & a_{2} & \cdots & 0 & 0 \\ 0 & 0 & -a_{3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -a_{n} & a_{n} \\ n+1 & 1 & 1 & \cdots & 1 & 1 \end{array}\right| D=0000n+1a1a20010a2a301000an1000an1
再按第一列展开,得
D = ( − 1 ) n + 1 + 1 ( n + 1 ) ∣ a 1 0 ⋯ 0 0 − a 2 a 2 ⋯ 0 0 0 − a 3 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ − a n a n ∣ = ( − 1 ) n ( n + 1 ) a 1 a 2 ⋯ a n \begin{aligned} D=(-1)^{n+1+1}(n+1) &\left|\begin{array}{ccccc} a_{1} & 0 & \cdots & 0 & 0 \\ -a_{2} & a_{2} & \cdots & 0 & 0 \\ 0 & -a_{3} & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & -a_{n} & a_{n} \end{array}\right| \\ =(-1)^{n}(n+1) a_{1} a_{2} \cdots a_{n} \end{aligned} D=(1)n+1+1(n+1)=(1)n(n+1)a1a2ana1a2000a2a30000an000an

例题二
计算n阶行列式计算 n n n阶行列式 ( n ⩾ 2 ) (n \geqslant 2) (n2)
D n = ∣ x 0 0 ⋯ 0 0 a 0 − 1 x 0 ⋯ 0 0 a 1 0 − 1 x ⋯ 0 0 a 2 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ − 1 x a n − 2 0 0 0 ⋯ 0 − 1 x + a n − 1 ∣ D_{n}=\left|\begin{array}{ccccccc} x & 0 & 0 & \cdots & 0 & 0 & a_{0} \\ -1 & x & 0 & \cdots & 0 & 0 & a_{1} \\ 0 & -1 & x & \cdots & 0 & 0 & a_{2} \\ \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & x & a_{n-2} \\ 0 & 0 & 0 & \cdots & 0 & -1 & x+a_{n-1} \end{array}\right| Dn=x10000x10000x0000010000x1a0a1a2an2x+an1
解析
方法一
这个题目是两线带一边形状的,先分离,再展开,可得递推式,求解为
D n = x ∣ x 0 ⋯ 0 0 a 1 − 1 x ⋯ 0 0 a 2 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ − 1 x a n − 2 0 0 ⋯ 0 − 1 x + a n − 1 ∣ + ( − 1 ) 1 + n a 0 ∣ − 1 x 0 ⋯ 0 0 0 − 1 x ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ − 1 x 0 0 0 ⋯ 0 − 1 ∣ D_{n}=x\left|\begin{array}{cccccc}x & 0 & \cdots & 0 & 0 & a_{1} \\ -1 & x & \cdots & 0 & 0 & a_{2} \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & x & a_{n-2} \\ 0 & 0 & \cdots & 0 & -1 & x+a_{n-1}\end{array}\right|+(-1)^{1+n} a_{0}\left|\begin{array}{cccccc}-1 & x & 0 & \cdots & 0 & 0 \\ 0 & -1 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -1 & x \\ 0 & 0 & 0 & \cdots & 0 & -1\end{array}\right| Dn=xx1000x00001000x1a1a2an2x+an1+(1)1+na01000x1000x00001000x1
= x ( x n − 1 + a n − 1 x n − 2 + ⋯ + a 2 x + a 1 ) + ( − 1 ) 1 + n a 0 ( − 1 ) n − 1 =x\left(x^{n-1}+a_{n-1} x^{n-2}+\cdots+a_{2} x+a_{1}\right)+(-1)^{1+n} a_{0}(-1)^{n-1} =x(xn1+an1xn2++a2x+a1)+(1)1+na0(1)n1
= x n + a n − 1 x n − 1 + ⋯ + a 2 x 2 + a 1 x + a 0 =x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0} =xn+an1xn1++a2x2+a1x+a0

方法二
可以采用累加相消法,将最后一行的 x x x倍加到倒数第二行,再将倒数第二行的 x x x倍加到倒数第三行,以此类推,可发现可解。

6.三对角型行列式

这是一种递推结构的行列式,特征为所有主子式都有相同的结构,从而以最后一列展开,将所得的 ( n − 1 ) (n-1) (n1) 阶行列式再展开即得递推公式,即递推法(特征方程法),请看下例

e g : D n = ∣ a b . . . c a b . . . c a b . . . . . . . . . . . . . . . . . . . . . a b . . . c a ∣ eg:D_n= \left|\begin{array}{cccc} a&b& &&... &&&\\ c&a&b&&...&&&\\ &c&a&b&...&&\\ ...&...&...&...&...&\\ &&&&...&a&b\\ &&&&...&c&a \end{array}\right| eg:Dn=ac...bac...ba...b.....................acba

S o l u t i o n Solution Solution: 按第一列拉普拉斯展开,得:

D n = a D n − 1 − b c D n − 2 D_n=aD_{n-1}-bcD_{n-2} Dn=aDn1bcDn2

解特征方程: x 2 = a x − b c x^2=ax-bc x2=axbc ,得:

x 1 = a + a 2 − 4 b c 2 x_1=\frac{a+\sqrt{a^2-4bc}}{2} x1=2a+a24bc

x 2 = a − a 2 − 4 b c 2 x_2=\frac{a-\sqrt{a^2-4bc}}{2} x2=2aa24bc

即可得通式:

D n = x 1 n + 1 − x 2 n + 1 x 1 − x 2 D_n = \frac{x_1^{n+1}-x_2^{n+1}}{x_1-x_2} Dn=x1x2x1n+1x2n+1

注:特征方程法我没记错的话,应该是在高中将数列的时候用到的。

7.各行元素和相等型行列式

这个特征已经很清楚了吧,方法就是累加法,很简单,直接看下例

e g : D n = ∣ 1 + x 1 x 1 . . . x 1 x 2 1 + x 2 . . . x 2 . . . . . . . . . . . . x n x n . . . 1 + x n ∣ eg:D_n= \left|\begin{array}{cccc} 1+x_1&x_1 &... &x_1\\ x_2&1+x_2&...&x_2\\ ...&...&...&...\\ x_n&x_n&...&1+x_n \end{array}\right| eg:Dn=1+x1x2...xnx11+x2...xn............x1x2...1+xn

S o l u t i o n Solution Solution: 将第 i , i = 2... n i,i=2...n i,i=2...n 行都加到第一行去,得:

D n = ∣ 1 + ∑ i = 1 n x i 1 + ∑ i = 1 n x i . . . 1 + ∑ i = 1 n x i x 2 1 + x 2 . . . x 2 . . . . . . . . . . . . x n x n . . . 1 + x n ∣ D_n= \left|\begin{array}{cccc} 1+\sum_{i=1}^{n}x_i&1+\sum_{i=1}^{n}x_i &... &1+\sum_{i=1}^{n}x_i\\ x_2&1+x_2&...&x_2\\ ...&...&...&...\\ x_n&x_n&...&1+x_n \end{array}\right| Dn=1+i=1nxix2...xn1+i=1nxi1+x2...xn............1+i=1nxix2...1+xn

所以:

D n = ( 1 + ∑ i = 1 n x i ) ∣ 1 1 . . . 1 x 2 1 + x 2 . . . x 2 . . . . . . . . . . . . x n x n . . . 1 + x n ∣ = ( 1 + ∑ i = 1 n x i ) ∣ 1 0 . . . 0 x 2 1 . . . 0 . . . . . . . . . . . . x n 0 . . . 1 ∣ = 1 + ∑ i = 1 n x i D_n= (1+\sum_{i=1}^{n}x_i)\left|\begin{array}{cccc} 1&1 &... &1\\ x_2&1+x_2&...&x_2\\ ...&...&...&...\\ x_n&x_n&...&1+x_n \end{array}\right|= (1+\sum_{i=1}^{n}x_i)\left|\begin{array}{cccc} 1&0&... &0\\ x_2&1&...&0\\ ...&...&...&...\\ x_n&0&...&1 \end{array}\right|=1+\sum_{i=1}^{n}x_i Dn=(1+i=1nxi)1x2...xn11+x2...xn............1x2...1+xn=(1+i=1nxi)1x2...xn01...0............00...1=1+i=1nxi

8.相邻两行对应元素相差K倍型行列式

这个要用步步差法

(1)大部分元素为数字,且相邻两行对应元素相差为 1 1 1,采用逐步作差的方法,即可出现大量 ± 1 \pm1 ±1 元素,进而出现大量 0 0 0元素

(2)若相邻两行相差 K K K倍,采用逐步作 k k k倍差得方法,即可出现大量 0 0 0元素

请看下面两个例子

e g 1 : D n = ∣ 0 1 2 . . . n − 2 n − 1 1 0 1 . . . n − 3 n − 2 2 1 0 . . . n − 4 n − 3 . . . . . . . . . . . . . . . . . . n − 2 n − 3 n − 4 . . . 0 1 n − 1 n − 2 n − 3 . . . 1 0 ∣ eg1:D_n= \left|\begin{array}{cccc} 0&1&2 &...&n-2 &n-1\\ 1&0&1&...&n-3&n-2\\ 2&1&0&...&n-4&n-3\\ ...&...&...&...&...&...\\ n-2&n-3&n-4&...&0&1\\ n-1&n-2&n-3&...&1&0 \end{array}\right| eg1:Dn=012...n2n1101...n3n2210...n4n3..................n2n3n4...01n1n2n3...10

S o l u t i o n Solution Solution: 从第二行开始,每行乘以 ( − 1 ) (-1) (1)再加到上一行,得:

D n = ∣ − 1 1 1 . . . 1 1 − 1 − 1 1 . . . 1 1 − 1 − 1 − 1 . . . 1 1 . . . . . . . . . . . . . . . . . . − 1 − 1 − 1 . . . − 1 1 n − 1 n − 2 n − 3 . . . 1 0 ∣ D_n= \left|\begin{array}{cccc} -1&1&1 &...&1 &1\\ -1&-1&1&...&1&1\\ -1&-1&-1&...&1&1\\ ...&...&...&...&...&...\\ -1&-1&-1&...&-1&1\\ n-1&n-2&n-3&...&1&0 \end{array}\right| Dn=111...1n1111...1n2111...1n3..................111...11111...10

再将第一列加到第 i , i = 2... n i,i=2...n i,i=2...n 列,得:

D n = ∣ − 1 0 0 . . . 0 0 − 1 − 2 0 . . . 0 0 − 1 − 2 − 2 . . . 0 0 . . . . . . . . . . . . . . . . . . − 1 − 2 − 2 . . . − 2 0 n − 1 2 n − 3 2 n − 4 . . . n n − 1 ∣ = ( − 1 ) n − 1 ( − 2 ) n − 2 ( n − 1 ) D_n= \left|\begin{array}{cccc} -1&0&0&...&0&0\\ -1&-2&0&...&0&0\\ -1&-2&-2&...&0&0\\ ...&...&...&...&...&...\\ -1&-2&-2&...&-2&0\\ n-1&2n-3&2n-4&...&n&n-1 \end{array}\right|=(-1)^{n-1}(-2)^{n-2}(n-1) Dn=111...1n1022...22n3002...22n4..................000...2n000...0n1=(1)n1(2)n2(n1)


e g 2 : D n = ∣ 1 a a 2 . . . a n − 2 a n − 1 a n − 1 1 a . . . a n − 3 a n − 2 a n − 2 a n − 1 1 . . . a n − 4 a n − 3 . . . . . . . . . . . . . . . . . . a 2 a 3 a 4 . . . 1 a a a 2 a 3 . . . a n − 1 1 ∣ eg2:D_n= \left|\begin{array}{cccc} 1&a&a^2 &...&a^{n-2} &a^{n-1}\\ a^{n-1}&1&a&...&a^{n-3} &a^{n-2} \\ a^{n-2} &a^{n-1} &1&...&a^{n-4} &a^{n-3} \\ ...&...&...&...&...&...\\ a^2&a^3&a^4&...&1&a\\ a&a^2&a^3&...&a^{n-1}&1 \end{array}\right| eg2:Dn=1an1an2...a2aa1an1...a3a2a2a1...a4a3..................an2an3an4...1an1an1an2an3...a1

S o l u t i o n Solution Solution: 从第一行开始,依次用前一行加上后一行的 ( − a ) (-a) (a) 倍,得:

D n = ∣ 1 − a n 0 0 . . . 0 0 a n − 1 1 − a n 0 . . . 0 0 0 0 1 − a n . . . 0 0 . . . . . . . . . . . . . . . . . . 0 0 0 . . . 1 − a n 0 a a 2 a 3 . . . a n − 1 1 ∣ D_n= \left|\begin{array}{cccc} 1-a^n&0&0&...&0&0\\ a^{n-1}&1-a^n&0&...&0 &0\\ 0 &0 &1-a^n&...&0&0 \\ ...&...&...&...&...&...\\ 0&0&0&...&1-a^n&0\\ a&a^2&a^3&...&a^{n-1}&1 \end{array}\right| Dn=1anan10...0a01an0...0a2001an...0a3..................000...1anan1000...01

所以:

D n = ( 1 − a n ) n − 1 D_n=(1-a^n)^{n-1} Dn=(1an)n1

例题一: 计算 n n n阶行列式 D = ∣ 1 2 3 4 ⋯ n 1 1 2 3 ⋯ n − 1 1 x 1 2 ⋯ n − 2 1 x x 1 ⋯ n − 3 ⋮ ⋮ ⋮ ⋮ ⋮ 1 x x x ⋯ 1 ∣ D=\left|\begin{array}{cccccc}1 & 2 & 3 & 4 & \cdots & n \\ 1 & 1 & 2 & 3 & \cdots & n-1 \\ 1 & x & 1 & 2 & \cdots & n-2 \\ 1 & x & x & 1 & \cdots & n-3 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 1 & x & x & x & \cdots & 1\end{array}\right| D=1111121xxx321xx4321xnn1n2n31

解析:从D的第二行开始,每行乘 ( − 1 ) (-1) (1)往上加,得

D = ∣ 0 1 1 1 ⋯ 1 1 0 1 − x 1 1 ⋯ 1 1 0 0 1 − x 1 ⋯ 1 1 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 0 ⋯ 1 − x 1 1 x x x ⋯ x 1 ∣ D=\left|\begin{array}{ccccccc} 0 & 1 & 1 & 1 & \cdots & 1 & 1 \\ 0 & 1-x & 1 & 1 & \cdots & 1 & 1 \\ 0 & 0 & 1-x & 1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1-x & 1 \\ 1 & x & x & x & \cdots & x & 1 \end{array}\right| D=0000111x00x111x0x1110x1111xx11111
= ( − 1 ) n + 1 ∣ 1 1 1 ⋯ 1 1 1 − x 1 1 ⋯ 1 1 0 1 − x 1 ⋯ 1 1 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 − x 1 ∣ =(-1)^{n+1}\left|\begin{array}{cccccc} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1-x & 1 & 1 & \cdots & 1 & 1 \\ 0 & 1-x & 1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1-x & 1 \end{array}\right| =(1)n+111x00111x011101111x1111

从第一行开始,每行都减下一行,得
D = ( − 1 ) n + 1 ∣ x 0 0 ⋯ 0 0 1 − x x 0 ⋯ 0 0 0 1 − x x ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ x 0 0 0 0 ⋯ 1 − x 1 ∣ = ( − 1 ) n + 1 x n − 2 D=(-1)^{n+1}\left|\begin{array}{cccccc} x & 0 & 0 & \cdots & 0 & 0 \\ 1-x & x & 0 & \cdots & 0 & 0 \\ 0 & 1-x & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & & \vdots \\ 0 & 0 & 0 & \cdots & x & 0 \\ 0 & 0 & 0 & \cdots & 1-x & 1 \end{array}\right|=(-1)^{n+1} x^{n-2} D=(1)n+1x1x0000x1x0000x00000x1x00001=(1)n+1xn2

  • 57
    点赞
  • 251
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值