详解机器学习中的VC维

本文介绍了机器学习中的VC维概念,它与训练误差和测试误差的关系。VC维能预测分类模型测试误差的概率上界,过大可能导致过拟合。线性分类器的VC维计算相对简单,而非线性分类器的VC维计算仍是一个开放问题。
摘要由CSDN通过智能技术生成

机器学习中的经典算法SVM(支持向量机)最初是由前苏联数学家Vladimir Vapnik 和 Alexey Chervonenkis 在 1963年提出的。二人合作完成的另外一个之于机器学习的重要贡献就是所谓的VC维(Vapnik-Chervonenkis dimension)。文献【2~3】是网上一个解释VC维这个概念的非常通俗的视频,本文主要据此整理而得。


一、Training Error 与 Test Error

如果你训练出来了一个Model,那么你该怎么评价它呢?文献【4】中介绍了几个常用的指标,包括Accuracy, Precision, Recall和F1-Score 。这些指标基本上都有准确率这样的意思,与之相反我们还可以定义错误率,或者称为误差(error)。显然,误差越大,准确率就越低,反之亦然。


评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值