Keras实例教程(4)之迁移学习

本文介绍了如何利用Keras和迁移学习技术,特别是VGG16模型,来解决猫狗分类问题。通过预处理图像数据,使用ImageDataGenerator进行增强,然后提取VGG16的卷积特征,构建并在有限数据上训练一个小型全连接层,最终实现约90%的分类准确率。进一步,通过微调VGG16的最后几个卷积层,提升模型性能至94%以上。
摘要由CSDN通过智能技术生成

迁移学习(Transfer Learning)是机器学习中的一个重要研究话题,也是在实践中具有重要价值的一类技术。Transfer learning focuses on storing knowledge gained while solving one problem and applying it to a different but related problem. 举例来说,在之前的文章中,我们曾经介绍过VGG16,它是由来自牛津大学的研究团队训练的一个针对ImageNet进行图像识别与分类的深度CNN网络。在ImageNet中,图像的中物体的类别多达1000种。当面对另外一个image dataset时,我们能否最大程度地利用已经训练好的VGG16来完成我们的任务,或者说是将VGG16中已经学到的经验“迁移”到新到问题中呢?本文就来带你一探究竟。

一、问题介绍

首先来看一下我们要解决的问题。这个问题源自于Kaggle网站曾经举行过的一项竞赛,如下图所示,竞赛的主题是设计能够分辨图像中的动物是猫还是狗的方法,你可以从【3】中获得我们实验所需的数据集。

原始数据集中包含12,500张猫的图片和12,500张狗的图片,我们仅从中各取前1000张

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值