关系的定义
关系是一个有序对集合或空集合,关系之间做运算以后依然是关系。
关系的定义域( dom R \text{dom} R domR),值域( ran R \text{ran} R ranR)和域( fld R \text{fld} R fldR)
dom R = { x ∣ ∃ y ( < x , y > ∈ R ) } \text{dom} R = \{x | \exist y(<x,y>\in R)\} domR={x∣∃y(<x,y>∈R)} ran R = { y ∣ ∃ x ( < x , y > ∈ R ) } \text{ran} R = \{y|\exist x(<x,y>\in R)\} ranR={y∣∃x(<x,y>∈R)} fld R = dom R ⋃ ran R \text{fld} R = \text{dom}R\bigcup\text{ran}R fldR=domR⋃ranR其中 < x , y > ∈ R <x,y>\in R <x,y>∈R表示 x x x经过 R R R运算变换得到 y y y,也可以记作 x R y x\text{R}y xRy
关系的运算
关系的逆、复合(合成)、限制和像
设 R = { < 1 , 2 > , < 1 , 3 > , < 3 , 4 > } R=\{<1,2>,<1,3>,<3,4>\} R={<1,2>,<1,3>,<3,4>}、 S = { < 2 , 4 > , < 3 , 5 > } S=\{<2,4>,<3,5>\} S={<2,4>,<3,5>}为任意关系, A = { 1 , 2 } A=\{1,2\} A={1,2}为集合
- R R R的逆,记作 R − 1 R^{-1} R−1 R − 1 = { < y , x > ∣ < x , y > ∈ R } R^{-1}=\{<y,x>|<x,y>\in R\} R−1={<y,x>∣<x,y>∈R}例: R − 1 = < 2 , 1 > , < 3 , 1 > , < 4 , 3 > R^{-1}={<2,1>,<3,1>,<4,3>} R−1=<2,1>,<3,1>,<4,3>
- R R R与 S S S的复合,复合分为左复合和右复合,一般情况下"复合"一词指的就是右复合,记作 R ∘ S R\circ S R∘S 左复合: R ∘ S = { < x , y > ∣ ∃ z ( < x , z > ∈ S ∧ < z , y > ∈ R ) } \text{左复合:}R\circ S=\{<x,y>|\exist z(<x,z>\in S\land<z,y>\in R)\} 左复合:R∘S={<x,y>∣∃z(<x,z>∈S∧<z,y>∈R)} 右复合: R ∘ S = { < x , y > ∣ ∃ z ( < x , z > ∈ R ∧ < z , y > ∈ S ) } \text{右复合:}R\circ S=\{<x,y>|\exist z(<x,z>\in R\land<z,y>\in S)\} 右复合:R∘S={<x,y>∣∃z(<x,z>∈R∧<z,y>∈S)}例: 左复合: R ∘ S = { ∅ } \text{左复合:}R\circ S=\{\varnothing\} 左复合:R∘S={∅}; 右复合: R ∘ S = { < 1 , 4 > , < 1 , 5 > } \text{右复合:}R\circ S=\{<1,4>,<1,5>\} 右复合:R∘S={<1,4>,<1,5>}
- R R R在 A A A上的限制,记作 R ↾ A R\upharpoonright A R↾A R ↾ A = { < x , y > ∣ < x , y > ∈ R ∧ x ∈ A } R\upharpoonright A=\{<x,y>|<x,y>\in R\land x\in A\} R↾A={<x,y>∣<x,y>∈R∧x∈A}例: R ↾ A = { < 1 , 2 > , < 1 , 3 > } R\upharpoonright A=\{<1,2>,<1,3>\} R↾A={<1,2>,<1,3>}
- A A A在 F F F下的像,记作 F [ A ] F[A] F[A] R [ A ] = ran ( R ↾ A ) R[A]=\text{ran}(R\upharpoonright A) R[A]=ran(R↾A)例: R [ A ] = { 2 , 3 } R[A]=\{2,3\} R[A]={2,3}
以上定义的运算是关系的基本运算
基本运算的主要性质
设 R R R、 S S S、 T T T是任意的关系,则有
- ( R − 1 ) − 1 = R (R^{-1})^{-1}=R (R−1)−1=R
- dom R − 1 = ran R \text{dom}R^{-1}=\text{ran}R domR−1=ranR,反之亦然
- ( R ∘ S ) ∘ T = R ∘ ( S ∘ T ) (R\circ S)\circ T=R\circ(S\circ T) (R∘S)∘T=R∘(S∘T)
- ( R ∘ S ) − 1 = S − 1 ∘ R − 1 (R\circ S)^{-1}=S^{-1}\circ R^{-1} (R∘S)−1=S−1∘R−1
- R ∘ ( S ∪ T ) = R ∘ S ∪ R ∘ T R\circ(S\cup T)=R\circ S\cup R\circ T R∘(S∪T)=R∘S∪R∘T
- R ∘ ( S ∩ T ) ⊆ R ∘ S ∩ R ∘ T R\circ(S\cap T)\subseteq R\circ S\cap R\circ T R∘(S∩T)⊆R∘S∩R∘T
- ( S ∪ T ) ∘ R = S ∘ R ∪ T ∘ R (S\cup T)\circ R=S\circ R\cup T\circ R (S∪T)∘R=S∘R∪T∘R
- ( S ∩ T ) ∘ R ⊆ S ∘ R ∩ T ∘ R (S\cap T)\circ R\subseteq S\circ R\cap T\circ R (S∩T)∘R⊆S∘R∩T∘R
关系的幂运算
设 R R R为 A A A上的关系, R ∘ R R\circ R R∘R可以简记为 R 2 R^2 R2,称为 R R R的二次幂。一般地可以定义 R R R的 n n n次幂为 R n R^n Rn,且有:
- R 0 = { < x , x > ∣ x ∈ A } R^0=\{<x,x>|x\in A\} R0={<x,x>∣x∈A}
- R n = R n − 1 ∘ R , n ⩾ 1 R^n=R^{n-1}\circ R,n\geqslant 1 Rn=Rn−1∘R,n⩾1
由定义可知 R 0 R^0 R0就是 A A A上的恒等关系 I A I_A IA,不难证明: R ∘ R 0 = R = R 0 ∘ R R\circ R^0=R=R^0\circ R R∘R0=R=R0∘R由此等式可以得到: R 1 = R 0 ∘ R = R R^1=R^0\circ R= R R1=R0∘R=R R 2 = R 1 ∘ R R^2=R^1\circ R R2=R1∘R R 3 = R 2 ∘ R R^3=R^2\circ R R3=R2∘R*
例如:设
A
=
{
1
,
2
,
4
,
5
}
A=\{1,2,4,5\}
A={1,2,4,5}有二元关系
R
=
{
<
1
,
2
>
,
<
2
,
1
>
,
<
4
,
2
>
,
<
5
,
1
>
}
R=\{<1,2>,<2,1>,<4,2>,<5,1>\}
R={<1,2>,<2,1>,<4,2>,<5,1>},则有:
R
0
=
{
<
1
,
1
>
,
<
2
,
2
>
,
<
4
,
4
>
,
<
5
,
5
>
}
R^0=\{<1,1>,<2,2>,<4,4>,<5,5>\}
R0={<1,1>,<2,2>,<4,4>,<5,5>}
R
1
=
R
=
{
<
1
,
2
>
,
<
2
,
1
>
,
<
4
,
2
>
,
<
5
,
1
>
}
R^1=R = \{<1,2>,<2,1>,<4,2>,<5,1>\}
R1=R={<1,2>,<2,1>,<4,2>,<5,1>}
R
2
=
{
<
1
,
1
>
,
<
2
,
2
>
,
<
4
,
1
>
,
<
5
,
2
>
}
R^2=\{<1,1>,<2,2>,<4,1>,<5,2>\}
R2={<1,1>,<2,2>,<4,1>,<5,2>}
R
3
=
{
<
1
,
2
>
,
<
2
,
1
>
,
<
4
,
2
>
,
<
5
,
1
>
}
R^3=\{<1,2>,<2,1>,<4,2>,<5,1>\}
R3={<1,2>,<2,1>,<4,2>,<5,1>}
关系幂运算定理*
设
R
R
R为
A
A
A上的关系,
m
m
m、
n
n
n是自然数,则下列等式成立
- R m ∘ R n = R m + n R^m\circ R^n=R^{m+n} Rm∘Rn=Rm+n
- ( R m ) n = R m n (R^m)^n=R^{mn} (Rm)n=Rmn
关系的性质
设 R R R是 A A A上的关系, R R R的性质主要有以下5种:自反性、反自反性、对称性、反对称性和传递性。
自反性 | 反自反性 | 对称性 | 反对称性 | 传递性 | |
---|---|---|---|---|---|
定义 | ∀ x ∈ A \forall x\in A ∀x∈A,有 < x , x > ∈ R <x,x>\in R <x,x>∈R | ∀ x ∈ A \forall x\in A ∀x∈A,有 < x , x > ∉ R <x,x>\notin R <x,x>∈/R | 若 < x , y > ∈ R <x,y>\in R <x,y>∈R,则 < y , x > ∈ R <y,x>\in R <y,x>∈R | 若 < x , y > ∈ R <x,y>\in R <x,y>∈R且 x ≠ y x\neq y x=y,则 < y , x > ∉ R <y,x>\notin R <y,x>∈/R | 若 < x , y > ∈ R <x,y>\in R <x,y>∈R且 < y , z > ∈ R <y,z>\in R <y,z>∈R,则 < x , z > ∈ R <x,z>\in R <x,z>∈R |
关系矩阵的特点 | 主对角线元素全为1 | 主对角线元素全为0 | 矩阵沿主对角线对称 | 若 r i j = 1 r_{ij}=1 rij=1且 i ≠ j i\neq j i=j,则 r j i = 0 r_{ji}=0 rji=0 | 无 |
关系图的特点 | 每一个顶点都有环 | 每一个顶点都没有环 | 若两个顶点之间有边,则一定是一对方向相反的边 | 若两个顶点之间有边,则一定是一条有向边 | 若顶点 x i x_i xi到 x j x_j xj有边且 x j x_j xj到 x k x_k xk有边,则 x i x_i xi到 x k x_k xk有边 |