集合论—关系的运算和性质

关系的定义

关系是一个有序对集合或空集合,关系之间做运算以后依然是关系。

关系的定义域( dom R \text{dom} R domR),值域( ran R \text{ran} R ranR)和域( fld R \text{fld} R fldR)

dom R = { x ∣ ∃ y ( < x , y > ∈ R ) } \text{dom} R = \{x | \exist y(<x,y>\in R)\} domR={xy(<x,y>R)} ran R = { y ∣ ∃ x ( < x , y > ∈ R ) } \text{ran} R = \{y|\exist x(<x,y>\in R)\} ranR={yx(<x,y>R)} fld R = dom R ⋃ ran R \text{fld} R = \text{dom}R\bigcup\text{ran}R fldR=domRranR其中 < x , y > ∈ R <x,y>\in R <x,y>R表示 x x x经过 R R R运算变换得到 y y y,也可以记作 x R y x\text{R}y xRy

关系的运算

关系的逆、复合(合成)、限制和像

R = { < 1 , 2 > , < 1 , 3 > , < 3 , 4 > } R=\{<1,2>,<1,3>,<3,4>\} R={<1,2>,<1,3>,<3,4>} S = { < 2 , 4 > , < 3 , 5 > } S=\{<2,4>,<3,5>\} S={<2,4>,<3,5>}为任意关系, A = { 1 , 2 } A=\{1,2\} A={1,2}为集合

  1. R R R,记作 R − 1 R^{-1} R1 R − 1 = { < y , x > ∣ < x , y > ∈ R } R^{-1}=\{<y,x>|<x,y>\in R\} R1={<y,x><x,y>R}例: R − 1 = < 2 , 1 > , < 3 , 1 > , < 4 , 3 > R^{-1}={<2,1>,<3,1>,<4,3>} R1=<2,1>,<3,1>,<4,3>
  2. R R R S S S复合,复合分为左复合和右复合,一般情况下"复合"一词指的就是右复合,记作 R ∘ S R\circ S RS 左复合: R ∘ S = { < x , y > ∣ ∃ z ( < x , z > ∈ S ∧ < z , y > ∈ R ) } \text{左复合:}R\circ S=\{<x,y>|\exist z(<x,z>\in S\land<z,y>\in R)\} 左复合:RS={<x,y>z(<x,z>S<z,y>R)} 右复合: R ∘ S = { < x , y > ∣ ∃ z ( < x , z > ∈ R ∧ < z , y > ∈ S ) } \text{右复合:}R\circ S=\{<x,y>|\exist z(<x,z>\in R\land<z,y>\in S)\} 右复合:RS={<x,y>z(<x,z>R<z,y>S)}例: 左复合: R ∘ S = { ∅ } \text{左复合:}R\circ S=\{\varnothing\} 左复合:RS={} 右复合: R ∘ S = { < 1 , 4 > , < 1 , 5 > } \text{右复合:}R\circ S=\{<1,4>,<1,5>\} 右复合:RS={<1,4>,<1,5>}
  3. R R R A A A上的限制,记作 R ↾ A R\upharpoonright A RA R ↾ A = { < x , y > ∣ < x , y > ∈ R ∧ x ∈ A } R\upharpoonright A=\{<x,y>|<x,y>\in R\land x\in A\} RA={<x,y><x,y>RxA}例: R ↾ A = { < 1 , 2 > , < 1 , 3 > } R\upharpoonright A=\{<1,2>,<1,3>\} RA={<1,2>,<1,3>}
  4. A A A F F F下的,记作 F [ A ] F[A] F[A] R [ A ] = ran ( R ↾ A ) R[A]=\text{ran}(R\upharpoonright A) R[A]=ran(RA)例: R [ A ] = { 2 , 3 } R[A]=\{2,3\} R[A]={2,3}

以上定义的运算是关系的基本运算

基本运算的主要性质

R R R S S S T T T是任意的关系,则有

  1. ( R − 1 ) − 1 = R (R^{-1})^{-1}=R (R1)1=R
  2. dom R − 1 = ran R \text{dom}R^{-1}=\text{ran}R domR1=ranR,反之亦然
  3. ( R ∘ S ) ∘ T = R ∘ ( S ∘ T ) (R\circ S)\circ T=R\circ(S\circ T) (RS)T=R(ST)
  4. ( R ∘ S ) − 1 = S − 1 ∘ R − 1 (R\circ S)^{-1}=S^{-1}\circ R^{-1} (RS)1=S1R1
  5. R ∘ ( S ∪ T ) = R ∘ S ∪ R ∘ T R\circ(S\cup T)=R\circ S\cup R\circ T R(ST)=RSRT
  6. R ∘ ( S ∩ T ) ⊆ R ∘ S ∩ R ∘ T R\circ(S\cap T)\subseteq R\circ S\cap R\circ T R(ST)RSRT
  7. ( S ∪ T ) ∘ R = S ∘ R ∪ T ∘ R (S\cup T)\circ R=S\circ R\cup T\circ R (ST)R=SRTR
  8. ( S ∩ T ) ∘ R ⊆ S ∘ R ∩ T ∘ R (S\cap T)\circ R\subseteq S\circ R\cap T\circ R (ST)RSRTR
关系的幂运算

R R R A A A上的关系, R ∘ R R\circ R RR可以简记为 R 2 R^2 R2,称为 R R R的二次幂。一般地可以定义 R R R n n n次幂为 R n R^n Rn,且有:

  1. R 0 = { < x , x > ∣ x ∈ A } R^0=\{<x,x>|x\in A\} R0={<x,x>xA}
  2. R n = R n − 1 ∘ R , n ⩾ 1 R^n=R^{n-1}\circ R,n\geqslant 1 Rn=Rn1R,n1

由定义可知 R 0 R^0 R0就是 A A A上的恒等关系 I A I_A IA,不难证明: R ∘ R 0 = R = R 0 ∘ R R\circ R^0=R=R^0\circ R RR0=R=R0R由此等式可以得到: R 1 = R 0 ∘ R = R R^1=R^0\circ R= R R1=R0R=R R 2 = R 1 ∘ R R^2=R^1\circ R R2=R1R R 3 = R 2 ∘ R R^3=R^2\circ R R3=R2R*

例如:设 A = { 1 , 2 , 4 , 5 } A=\{1,2,4,5\} A={1,2,4,5}有二元关系 R = { < 1 , 2 > , < 2 , 1 > , < 4 , 2 > , < 5 , 1 > } R=\{<1,2>,<2,1>,<4,2>,<5,1>\} R={<1,2>,<2,1>,<4,2>,<5,1>},则有:
R 0 = { < 1 , 1 > , < 2 , 2 > , < 4 , 4 > , < 5 , 5 > } R^0=\{<1,1>,<2,2>,<4,4>,<5,5>\} R0={<1,1>,<2,2>,<4,4>,<5,5>} R 1 = R = { < 1 , 2 > , < 2 , 1 > , < 4 , 2 > , < 5 , 1 > } R^1=R = \{<1,2>,<2,1>,<4,2>,<5,1>\} R1=R={<1,2>,<2,1>,<4,2>,<5,1>} R 2 = { < 1 , 1 > , < 2 , 2 > , < 4 , 1 > , < 5 , 2 > } R^2=\{<1,1>,<2,2>,<4,1>,<5,2>\} R2={<1,1>,<2,2>,<4,1>,<5,2>} R 3 = { < 1 , 2 > , < 2 , 1 > , < 4 , 2 > , < 5 , 1 > } R^3=\{<1,2>,<2,1>,<4,2>,<5,1>\} R3={<1,2>,<2,1>,<4,2>,<5,1>}
关系幂运算定理*
R R R A A A上的关系, m m m n n n是自然数,则下列等式成立

  1. R m ∘ R n = R m + n R^m\circ R^n=R^{m+n} RmRn=Rm+n
  2. ( R m ) n = R m n (R^m)^n=R^{mn} (Rm)n=Rmn

关系的性质

R R R A A A上的关系, R R R的性质主要有以下5种:自反性、反自反性、对称性、反对称性和传递性。

自反性反自反性对称性反对称性传递性
定义 ∀ x ∈ A \forall x\in A xA,有 < x , x > ∈ R <x,x>\in R <x,x>R ∀ x ∈ A \forall x\in A xA,有 < x , x > ∉ R <x,x>\notin R <x,x>/R < x , y > ∈ R <x,y>\in R <x,y>R,则 < y , x > ∈ R <y,x>\in R <y,x>R < x , y > ∈ R <x,y>\in R <x,y>R x ≠ y x\neq y x=y,则 < y , x > ∉ R <y,x>\notin R <y,x>/R < x , y > ∈ R <x,y>\in R <x,y>R < y , z > ∈ R <y,z>\in R <y,z>R,则 < x , z > ∈ R <x,z>\in R <x,z>R
关系矩阵的特点主对角线元素全为1主对角线元素全为0矩阵沿主对角线对称 r i j = 1 r_{ij}=1 rij=1 i ≠ j i\neq j i=j,则 r j i = 0 r_{ji}=0 rji=0
关系图的特点每一个顶点都有环每一个顶点都没有环若两个顶点之间有边,则一定是一对方向相反的边若两个顶点之间有边,则一定是一条有向边若顶点 x i x_i xi x j x_j xj有边且 x j x_j xj x k x_k xk有边,则 x i x_i xi x k x_k xk有边
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白水baishui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值