【PyTorch】模型部署

本文介绍了PyTorch模型部署的三种技术路径:TorchScript-Libtorch(官方C++前端)、TVM和TensorRT。TorchScript是官方推荐从研究到生产的路径,TVM在JIT上有优势但硬件加速有限,而TensorRT则是Nvidia提供的高性能硬件加速解决方案。
摘要由CSDN通过智能技术生成

Backto PyTorch Index

最佳实践 Best Practice

2020-07-03

Server/Nvidia :C++ / TensorRT
Mobile/Non-Nvidia : TVM

技术路径 Paths

TorchScript-Libtorch / offcial C++ frontend

官方推荐和主代码演进的方向

The PyTorch team is betting heavily on TorchScript/libtorch as the path for going from research to production. Our ideal workflow is for the user to prototype in Python/PyTorch eager, convert to TorchScript, then use our compiler infrastructure to optimize and potentially lower your model to specialized hardware.

Pro: 官方出品,覆盖面广
Con:当前主要是从 Python 到 C++ 的转写,利用的是C++语言的加速特性。而更为关键的硬件加速涉及不多。

TVM</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值