线代笔记 #05# 复合矩阵

源: 线性代数的本质 

 

线性变换可以看作参数、返回值都是向量的函数。 

当多个线性变换复合作用于同一个向量的时候,可以通过矩阵复合运算(也就是矩阵乘法)得到一个等效变换。

 矩阵实际上描述(追踪)的是基向量的变换,而空间内任意向量则是基向量特定的线性组合。

矩阵复合运算可以类比为函数中的 f(g(x)) ,将 f 和 g 复合为一个函数。

计算的时候,只要把内侧的矩阵 拆分为单个向量分别用外侧矩阵处理,最后把得到的向量再重新组合为一个矩阵就可以了。

之后是一个显而易见的事实,

转载于:https://www.cnblogs.com/xkxf/p/8182461.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值