最近花了点时间重温了行业标准,论文看的比较少,没什么可写的。刚好昨天回顾了一点论文,在这里做个科普,和总结。
Ref:李作虎博士的PHD论文。
完好性概念是什么?
这里给出国际民航组织(ICAO)提出的航空无线电导航必备性能RNP,RNP是民航界所公认的用来评价卫星导航性能的指标参数,主要包括通常所说的四大性能指标:精度、完好性、连续性和可用性。
精度:精度指标定义为系统为运载体所提供的实时位置与运载体当时的真实位置之间的重合度。换而言之,就是你定位得到的Posx,和真实位置Pos0,它们之间的偏差用精度来评估。
完好性:完好性是指导航系统在不能用于导航服务时及时向用户提出告警的能力。这里多了一个词,告警。我们在实际应用完好性增强系统的时候,通过你会通过各类模型和已知参数保守的得到一个极限偏差量,反映到最终的定位域上叫Protection Level。通常来说,PL足够保守,你就可以获得对当前定位结果的一个约束,哦我知道了这里顶多偏个2米,模型约完善越保守,这里的偏差越安全可控。比如实际偏了1m,PL1.5m,我的要求就是保证达到2m,刚刚好对不对,这种情况称为无HMI情况,就是没有危险误导信息。还有偏了3m,PL3米,我的要求仍然是2m,这个时候判定是准确的,HMI也没有发生,风险也可控。然而有好就有坏,实际偏了3m,PL还是1.5m,我的要求仍然是2m,这是就发生问题了,你的极限给的不准啊,这就给应用带来了很大的困扰,这里就产生HMI。最后一种情况是实际偏了1.5m,结果你告诉我偏了3m,我把这判定成了不可用,这里也是HMI。这两类情况也就是通常俗称的一类和二类风险概率,也就是漏检和虚警概率。当然,通常情况下,我们的模型设计和取值的时候是通过了统计验证,是足够保守而且通常偏向于保守的。
连续性:作为一个向服务空域内所有用户提供连续导航系统服务的系统,必须明确告知用户系统正常工作的持续能力,这就是卫星导航系统中常说的连续性。我们看指标的时候,通常觉得奇怪,咦这货怎么还带每个小时或者每15s的看,不要慌,这就是一个和时间有关的指标。当然我们计算的时候是有诀窍的,比如我们知道一组故障发生的时间T,根据T可以求出连续的故障之间的间隔时间INTERVAL,我们给这些间隔求一个均值,称为MTBT(平均故障间隔时间,单位h or 15s),然后连续性概率为exp(-1/MTBT)。
可用性:可用性是指导航系统在其服务空域内能为运载体提供可用导航服务的时间百分比,是对满足服务性能标准的时间累计效应的统计。比如你有一颗卫星,可用的时长为X,发生A类故障的修复时间为Y,那么这颗卫星在A类故障下的连续性为X/(X+Y),当然多类故障综合评估更复杂一点,单颗卫星反映到最终的导航能力的连续性也更复杂一点。
PS:补充几个问题的思考。
1. Galileo的完好性
大家都知道Galileo在设计的时候是考虑了完好性的,那么它就是考虑在哪了呢?怎么用的?
给一个通俗解释版:
主要是反映定轨和时间同步误差SISE,这个值由Galileo的地面监测站监测得到,这个发给了用户。同时,地面监测站通过链路发送SISE给完好性处理单元,单元验证后,得到了SISMA和IF信息,也发送给用户,用户通过这三个数据进行判断和验证是否可用。SISMA是完好性处理单元验证了之后得到的膨胀偏差的方差,就是给用户一个基准告诉用户这项误差我验证啦就是偏这么多,超出一定范畴就不合格~IF就是可用性指标,我先检查检查,可用了再告诉你。
所以优点在于对定轨和时间同步误差先做了约束,能够快速反映这部分异常的影响,并通过广播信息播发给用户。
再解释一下就是GPS等大佬型系统就是我发了这个信息,你用的对不对自己看,不对也别找我各安天命~Galileo相对来说人性化一点点,他用了监测中心和完好性验证中心自己先试了试告诉你,我这里用的是这个水平啦,你参考看看,不对也别找我~~
2. Markov链和Laplace变换可以应对的一些问题。
李博士的论文里提到了Markov链解决了一个问题,就是可用性计算。
不得不说,论证还是相对比较严谨的。Markov链方便于解决一类问题,就是转移概率清晰的情况。假定了初始的状态,量化时间,卫星故障概率和修复概率已知,刚刚好就是状态的转移过程,由此得到的稳态概率也就是最终的可用性。
稍稍提一点瑕疵:转移概率矩阵打错了,但推的时候没推错。更多的讲讲稳态条件和稳态推导会更好一点。另外多星评估整体的Markov链的推导和结论不够完善,还是写的稍微更严谨一点点更好。当然瑕不掩瑜我这是吹毛求疵,李博士的论文还是非常出色的,读完从宏观角度对整体完好性的理解更深刻。
这里再补充一下Laplace变换,Laplace变换也适用于解决一类问题,就是LTI系统通过Laplace变换,可以通过终值定理获得稳态变化。这里应用的前提是你要知道离散系统的变换方程。
熟悉的朋友们是不是发现,完好性模块影响中某个极限影响的推导中,Laplace变换似曾相识?
————————————————
版权声明:本文为CSDN博主「sylvia0726」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/sylvia0726/article/details/80371789