用傅里叶变换分析股票曲线的周期性和波动性

 自己开发了一个股票智能分析软件,功能很强大,需要的点击下面的链接获取:

https://www.cnblogs.com/bclshuai/p/11380657.html

用傅里叶变换分析股票的周期性

目录

1      傅里叶变换... 1

2      傅里叶变换对股票曲线进行周期性分析... 2

3      总结... 4

4      视频介绍说明... 4

1        傅里叶变换

傅里叶是法国著名的数学家和物理学家,他提出的傅里叶变换可以将一条无法看出规律和周期性的曲线分解成无数个周期信号的叠加。例如将一条杂乱无章的曲线分解为很多个周期性曲线,选取5条幅值最大的周期性曲线,作为这条曲线的主要周期曲线,去除其他幅值比较小的周期曲线。如下图所示。

图1傅里叶曲线分解

我们将五条周期性曲线进行合成,就可以得到一条与原曲线非常接近,但是已经和原来曲线有相同的变化趋势和波动周期。可见傅里叶变换具有滤波和周期性分析功能,可以将杂乱无章的曲线分解为多个周期曲线的叠加,从而去分析曲线的周期性。去除幅值较小的波动信号,达到滤波降噪的作用。

 

图2傅里叶曲线合成

我们可以采用傅里叶变换去分析股票曲线的周期性。

2        傅里叶变换对股票曲线进行周期性分析

股票曲线通常都是上下波动的,从长时间范围来看具有一定的周期性,但是很难找到股票曲线的周期性规律,更无法判断股票的波动周期。通过傅里叶变换可以方便的将股票曲线进行分解,并且能够得到不同周期曲线的波动周期,对分析股票的周期性具有一定的参考价值。如下图所示,将海康威视近三个月数据进行波动性分析,黑色线表示股票曲线,下面6条周期曲线是分解之后的周期曲线。短期来看股票曲线在平衡点62元附近周期震荡,震荡的上下幅值是8元,如果股票价格在54元位置附近反弹,则说明会进入下一个波动周期。

 

图3 近90天股票曲线周期分析

将分析天数改为300,得到近一年股票数据周期性分析如下图所示,从长期看,股票曲线有下行趋势,如果突破短期的震荡波动临界点54元,则有可能会下跌到45元左右。

图4 近300天股票曲线周期分析

3        总结

傅里叶变化可以根据历史数据分析股票曲线的周期性,可以从长期和短期来查看股票曲线的波动周期。本软件提供的波动性分析,只能提供参考价值,不能完全按照曲线波动性进行交易,股市变化风云莫测,需慎之又慎。

4        下载地址

https://www.cnblogs.com/bclshuai/p/11380657.html

### 关于傅里叶变换生成的频谱图与波动的关系 #### 傅里叶变换原理概述 傅里叶变换是一种将时域信号转换到频域的数学工具。通过这种变换,任何复杂的周期性函数都可以被分解成多个不同频率、幅度相位的正弦波叠加而成[^1]。 #### 频谱图的意义 频谱是描述信号中各种频率成分及其对应强度(幅度或功率)的分布图。它展示了原始时域信号中的各个频率分量以及这些分量的能量大小。对于一个由多种频率组成的复合信号,在其对应的频谱上会显示出若干峰值,每一个峰代表了一个特定频率下的能量集中程度;而对于连续变化而非离散存在的频率,则会在相应位置形成较为平滑的曲线[^3]。 #### 波动关系解析 当观察到某个实际物理过程产生的波动图形时——比如声音振动或者电磁辐射等现象所记录下来的波形数据,如果该波动是由几个简单的谐振子运动合成而来的话,那么对其进行傅立叶分析之后就能得到清晰明了的结果:原本复杂无序的时间序列将会转化为几条明显区分出来的线条状结构,每一条线都代表着构成整体的一个基本要素即单个纯音或者说单一频率的声音/光束等等[^4]。 ```matlab % MATLAB代码用于展示如何创建并可视化含有噪声的正弦波与其相应的频谱图 Fs = 1000; % Sampling frequency t = 0:1/Fs:1-1/Fs; x = sin(2*pi*1*t) + randn(size(t)); % Original signal with noise added X = fft(x); % Perform FFT on the noisy sine wave P2 = abs(X/L); P1 = P2(1:L/2+1); P1(2:end-1) = 2*P1(2:end-1); f = Fs*(0:(L/2))/L; plot(f,P1) title('Single-Sided Amplitude Spectrum of x(t)') xlabel('f (Hz)') ylabel('|P1(f)|') ``` 上述Matlab脚本模拟了一种情况,其中包含了1赫兹的基础正弦波加上随机噪音干扰后的效果,并且利用快速傅里叶变换来获取这个混合体内的主要频率特征。最终绘制出的是只考虑正值部分的一侧幅值频谱图表,从中可以看出即使存在大量杂乱因素影响下仍然能够识别出原初设定的那个显著特点—也就是位于大约1Hz处有一个突出尖锐的最大值点,这正是我们加入进去的人工设计好的纯净音频信号的表现形式。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bclshuai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值