最近想用傅里叶转换寻找一下上证或一些周期性比较强的ETF基金的波动周期规律,然后在网上到处寻找资料 。结果网上资料还是太少了,讲傅里叶的文章一般不会涉及量化;而讲量化的,引用代码时竟然不用股价分析的例子,反而用调制解调的代码,估计自己可能也是不太懂的。
之后在网上找了一大堆参考文章,最后的关键竟然在外网找到了答案,有点讽刺。
然后我自己写了一个小的可执行文件 ,已经打包成可以独立运行的exe,需要的可以联系我。
运行下面的代码 需要前置的包有:通达信接口、tkinter
# -*- coding : utf-8 -*-
# coding: utf-8
import numpy as np
from scipy.fftpack import fft
import matplotlib
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg, NavigationToolbar2Tk
from matplotlib.figure import Figure
from matplotlib.pylab import mpl
import pandas as pd
import tushare as ts
from pytdx.exhq import *
from pytdx.hq import *
from pytdx.hq import TdxHq_API
from pytdx.exhq import TdxExHq_API
from pytdx.reader import TdxDailyBarReader, TdxFileNotFoundException
from tkinter import filedialog # 路径选择
from tkinter import ttk
import tkinter
from tkinter import *
import hashlib
import time
LOG_LINE_NUM = 0
Local_input = 0
mpl.rcParams['font.sans-serif'] = ['SimHei'] # 显示中文
mpl.rcParams['axes.unicode_minus'] = False # 显示负号
"""数内部,我们使用np.linspace函数生成一个时间序列,从0到num_samples / sampling_rate,共num_samples个采样点。
接着,我们使用np.sin函数生成正弦序列,并根据输入的参数调整振幅、频率、相位差和垂直位移。"""
def gene