有趣的数学 什么是最速曲线?原理是什么?

本文探讨了物理中的最速曲线概念,通过能量守恒和弧长公式计算质点从A点到B点的最短时间路径,利用欧拉方程求解得到旋轮线。卢圣治的《理论力学基本教程》提供了相关理论背景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        最速曲线,从字面上理解,就是“速度”最快的曲线,这里的“速度”是指平均速度、瞬时速度,抑或是速率。物理上有一个著名的最速落径问题。竖直平面内,不在同一铅垂线上的两个固定点之间的许多条曲线路径中,能使质点以最短的时间从高位置点到低位置点自由落下的那条曲线,称为最速落径,是一条旋轮线。

        如图所示,A点坐标(x1,y1),B点坐标(x2,y2),质点从A点沿曲线无摩擦下滑到B点,我们以A点同时作为零势能点和坐标原点,质点(x,y)代表其运动轨迹。

        根据能量守恒定律,不难得出质点下滑的瞬时速率为: 

        利用弧长公式得到下滑的总时间为:

        下面需要对时间求极值,以得到最短时间对应的y的方程,利用欧拉方程求解,最后得到:

        此参数方程对应的旋轮线即为“最速曲线”。关于欧拉方程的详细求解,可以参考卢圣治主编的《理论力学基本教程》(第二版)180~187页。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值