最速曲线,从字面上理解,就是“速度”最快的曲线,这里的“速度”是指平均速度、瞬时速度,抑或是速率。物理上有一个著名的最速落径问题。竖直平面内,不在同一铅垂线上的两个固定点之间的许多条曲线路径中,能使质点以最短的时间从高位置点到低位置点自由落下的那条曲线,称为最速落径,是一条旋轮线。
如图所示,A点坐标(x1,y1),B点坐标(x2,y2),质点从A点沿曲线无摩擦下滑到B点,我们以A点同时作为零势能点和坐标原点,质点(x,y)代表其运动轨迹。
根据能量守恒定律,不难得出质点下滑的瞬时速率为:
利用弧长公式得到下滑的总时间为:
下面需要对时间求极值,以得到最短时间对应的y的方程,利用欧拉方程求解,最后得到:
此参数方程对应的旋轮线即为“最速曲线”。关于欧拉方程的详细求解,可以参考卢圣治主编的《理论力学基本教程》(第二版)180~187页。