Brachistochrone curve(传说中的最速降线)

  Brachistochrone 来自于古希腊语:βράχιστος χρόνος (brakhistos, superlative of brakhus short + chronos time),意思是时间最短. Brachistochrone curve 指的就是"时间最短"的曲线.
  关于最速降线问题的起源和发展参见:知乎贴,用一句话来概括就是:神仙打架!

  为了您更好的阅读体验,请使用电脑浏览.

一、问题重述

  一质量为 m m m 的质点,在重力作用下从定点 A \small A A 沿曲线下滑至定点 B \small B B,试确定一条曲线,使得质点由 A \small A A 下滑到 B \small B B 所需时间最短.
  假定 B \small B B A \small A A 低,重力加速度为常数 g g g,不计摩擦力和其他阻力等因素.

二、数学描述

  建立坐标系,如图所示. 设曲线为 y = y ( x ) , ( x ∈ [ 0 , c ] ) \small y=y(x),(x\in[0,c]) y=y(x),(x[0,c]),满足 y ( 0 ) = 0 , y ( c ) = H \small y(0)=0,y(c)=H y(0)=0,y(c)=H,且足够光滑,并设这样的函数组成的全体为集合 C \small C C,我们的目标是求函数 y y y,使得
y = arg min ⁡ C {   质点沿   y = y ( x )   由   A   到   B   的下滑时间   } y=\argmin _C \{\,\textbf{质点沿}\,y=y(x)\, \textbf{由}\,A\,\textbf{到}\,B\,\textbf{的下滑时间}\,\} y=Cargmin{ 质点沿y=y(x)AB的下滑时间}

三、物理建模

一言一蔽之,曰:分割-近似-取极限.

分割:
  建立相同坐标系,设 A ( 0 , 0 ) , B ( c , H ) \small A(0,0),B(c,H) A(0,0),B(c,H),将带状区域 0 < y < H \small 0<y<H 0<y<H 用平行于 x x x 轴的直线 y = y k = k H / n \small y=y_k=kH/n y=yk=kH/n 分割成 n n n 个小带状区域.

近似:
  在带状区域 y k − 1 < y < y k y_{k-1}<y<y_k yk1<y<yk 内,可近似认为 v k = 2 g y k v_k=\sqrt{2gy_k} vk=2gyk (根据能量守恒定律可得)不变,近似认为曲线为直线.

分析:怎样的路线才是最快的?先来考虑下述问题.

  设质点从 A 1 \small A_1 A1 经直线 l l l 到达 A 2 \small A_2 A2,质点在 l l l 上侧时速度为 v 1 v_1 v1,下侧时速度为 v 2 v_2 v2,请问质点应沿什么路线运动才最省时?

  因为质点在直线两侧时速度不变,所以运动轨迹应是折线,折点在直线 l l l 上,问题转化为确定最佳折点的位置.

  设 A 1 O ⊥ l , A 2 D ⊥ l , C \small A_1O\perp l,A_2D\perp l,C A1Ol,A2Dl,C 为折点,其余标注如图所示,只有 x x x 为变量.

则质点由 A 1 \small A_1 A1 A 2 \small A_2 A2 所需时间为 t = A 1 C v 1 + C A 2 v 2 = x 2 + a 2 v 1 + ( c − x ) 2 + b 2 v 2 t=\frac{A_1C}{v_1}+\frac{CA_2}{v_2}=\frac{\sqrt{x^2+a^2}}{v_1}+\frac{\sqrt{(c-x)^2+b^2}}{v_2} t=v1A1C+v2CA2=v1x2+a2 +v2(cx)2+b2 x x x 求导 d t d x = 1 v 1 2 x x 2 + a 2 − 1 v 2 2 ( c − x ) ( c − x ) 2 + b 2 \frac{dt}{dx}=\frac{1}{v_1}\frac{2x}{\sqrt{x^2+a^2}}-\frac{1}{v_2}\frac{2(c-x)}{\sqrt{(c-x)^2+b^2}} dxdt=v11x2+a2 2xv21(cx)2+b2 2(cx)唯一驻点满足 d t d x = 0 ⇒ 1 v 1 x x 2 + a 2 = 1 v 2 ( c − x ) ( c − x ) 2 + b 2 \frac{dt}{dx}=0\Rightarrow\frac{1}{v_1}\frac{x}{\sqrt{x^2+a^2}}=\frac{1}{v_2}\frac{(c-x)}{\sqrt{(c-x)^2+b^2}} dxdt=0v11x2+a2 x=v21(cx)2+b2 (cx) sin ⁡ α 1 v 1 = sin ⁡ α 2 v 2 \frac{\sin\alpha_1}{v_1}=\frac{\sin\alpha_2}{v_2} v1sinα1=v2sinα2这就是光学中的 Snell \small \textrm{Snell} Snell 折射定律,即光沿"最短路径"传播.

回过头来继续看我们的问题

  考虑质点经过第 k k k 层与第 k + 1 k+1 k+1 层,根据近似,质点在每层中速度不变,由上述结论知,要使时间最短, α k , α k + 1 \alpha_{k},\alpha_{k+1} αk,αk+1 应满足 sin ⁡ α k v k = sin ⁡ α k + 1 v k + 1 \frac{\sin\alpha_k}{v_k}=\frac{\sin\alpha_{k+1}}{v_{k+1}} vksinαk=vk+1sinαk+1对任意的 k k k 成立,则 sin ⁡ α k v k = C 1 ( 常数 ) \frac{\sin\alpha_k}{v_k}=C_1(\textbf{常数}) vksinαk=C1(常数)取极限:
  令 n → ∞ n\to\infin n,平行线间距趋于零,对于曲线上任意一点,都有 sin ⁡ α v = C 1 ( 常数 ) \frac{\sin\alpha}{v}=C_1(\textbf{常数}) vsinα=C1(常数)其中 α \alpha α 为该点切线与铅垂线夹角,如图所示.

∵ α + β = π 2 , y ′ = tan ⁡ β ∴ sin ⁡ α = cos ⁡ β = 1 ( tan ⁡ β ) 2 + 1 = 1 ( y ′ ) 2 + 1 \begin{aligned}&\because\alpha+\beta=\frac{\pi}{2},y'=\tan\beta\\&\therefore\sin\alpha=\cos\beta=\frac{1}{\sqrt{(\tan\beta)^2+1}}=\frac{1}{\sqrt{(y')^2+1}}\end{aligned} α+β=2π,y=tanβsinα=cosβ=(tanβ)2+1 1=(y)2+1 1再由 v = 2 g y v=\sqrt{2gy} v=2gy ,得 sin ⁡ α v = 1 2 g y ( y ′ ) 2 + 1 = C 1 ⇒ y ( 1 + ( y ′ ) 2 ) = C ( 常数 ) \frac{\sin\alpha}{v}=\frac{1}{\sqrt{2gy}\sqrt{(y')^2+1}}=C_1\Rightarrow y(1+(y')^2)=C(\textbf{常数}) vsinα=2gy (y)2+1 1=C1y(1+(y)2)=C(常数)

四、数学建模

  上面算是用物理方法得到的结论,下面让我们看看复杂而严谨的数学方法,首先需要一些数学基础,鉴于我也没学过,就抄一下.

1. 数学基础
(1) 泛函

  首先来介绍一种特殊

  • 10
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值