Brachistochrone curve(传说中的最速降线)

本文探讨了最速降线问题,即在重力作用下,从一点A滑到另一点B的最短时间路径。通过对问题的重述、数学和物理建模,得出最速降线是滚轮线(旋轮线)的一部分。利用物理中的能量守恒和变分法,结合数学中的泛函极值原理,推导出满足条件的曲线方程。最后,揭示了一个有趣的巧合:当滚轮以特定角速度旋转时,滚轮上点的运动速度与沿最速降线运动的质点速度相同。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  Brachistochrone 来自于古希腊语:βράχιστος χρόνος (brakhistos, superlative of brakhus short + chronos time),意思是时间最短. Brachistochrone curve 指的就是"时间最短"的曲线.
  关于最速降线问题的起源和发展参见:知乎贴,用一句话来概括就是:神仙打架!

  为了您更好的阅读体验,请使用电脑浏览.

一、问题重述

  一质量为 m m m 的质点,在重力作用下从定点 A \small A A 沿曲线下滑至定点 B \small B B,试确定一条曲线,使得质点由 A \small A A 下滑到 B \small B B 所需时间最短.
  假定 B \small B B A \small A A 低,重力加速度为常数 g g g,不计摩擦力和其他阻力等因素.

二、数学描述

  建立坐标系,如图所示. 设曲线为 y = y ( x ) , ( x ∈ [ 0 , c ] ) \small y=y(x),(x\in[0,c]) y=y(x),(x[0,c]),满足 y ( 0 ) = 0 , y ( c ) = H \small y(0)=0,y(c)=H y(0)=0,y(c)=H,且足够光滑,并设这样的函数组成的全体为集合 C \small C C,我们的目标是求函数 y y y,使得
y = arg min ⁡ C {   质点沿   y = y ( x )   由   A   到   B   的下滑时间   } y=\argmin _C \{\,\textbf{质点沿}\,y=y(x)\, \textbf{由}\,A\,\textbf{到}\,B\,\textbf{的下滑时间}\,\} y=Cargmin{质点沿y=y(x)AB的下滑时间}

三、物理建模

一言一蔽之,曰:分割-近似-取极限.

分割:
  建立相同坐标系,设 A ( 0 , 0 ) , B ( c , H ) \small A(0,0),B(c,H) A(0,0),B(c,H),将带状区域 0 < y < H \small 0<y<H 0<y<H 用平行于 x x x 轴的直线 y = y k = k H / n \small y=y_k=kH/n y=yk=kH/n 分割成 n n n 个小带状区域.

近似:
  在带状区域 y k − 1 < y < y k y_{k-1}<y<y_k yk1<y<yk 内,可近似认为 v k = 2 g y k v_k=\sqrt{2gy_k} vk=2gyk (根据能量守恒定律可得)不变,近似认为曲线为直线.

分析:怎样的路线才是最快的?先来考虑下述问题.

  设质点从 A 1 \small A_1 A1 经直线 l l l 到达 A 2 \small A_2 A2,质点在 l l l 上侧时速度为 v 1 v_1 v1,下侧时速度为 v 2 v_2 v2,请问质点应沿什么路线运动才最省时?

  因为质点在直线两侧时速度不变,所以运动轨迹应是折线,折点在直线 l l l 上,问题转化为确定最佳折点的位置.

  设 A 1 O ⊥ l , A 2 D ⊥ l , C \small A_1O\perp l,A_2D\perp l,C A1Ol,A2Dl,C 为折点,其余标注如图所示,只有 x x x 为变量.

则质点由 A 1 \small A_1 A1 A 2 \small A_2 A2 所需时间为 t = A 1 C v 1 + C A 2 v 2 = x 2 + a 2 v 1 + ( c − x ) 2 + b 2 v 2 t=\frac{A_1C}{v_1}+\frac{CA_2}{v_2}=\frac{\sqrt{x^2+a^2}}{v_1}+\frac{\sqrt{(c-x)^2+b^2}}{v_2} t=v1A1C+v2CA2=v1x2+a2 +v2(cx)2+b2 x x x 求导 d t d x = 1 v 1 2 x x 2 + a 2 − 1 v 2 2 ( c − x ) ( c − x ) 2 + b 2 \frac{dt}{dx}=\frac{1}{v_1}\frac{2x}{\sqrt{x^2+a^2}}-\frac{1}{v_2}\frac{2(c-x)}{\sqrt{(c-x)^2+b^2}} dxdt=v11x2+a2 2xv21(cx)2+b2 2(cx)唯一驻点满足 d t d x = 0 ⇒ 1 v 1 x x 2 + a 2 = 1 v 2 ( c − x ) ( c − x ) 2 + b 2 \frac{dt}{dx}=0\Rightarrow\frac{1}{v_1}\frac{x}{\sqrt{x^2+a^2}}=\frac{1}{v_2}\frac{(c-x)}{\sqrt{(c-x)^2+b^2}} dxdt=0v11x2+a2 x=v21(cx)2+b2 (cx) sin ⁡ α 1 v 1 = sin ⁡ α 2 v 2 \frac{\sin\alpha_1}{v_1}=\frac{\sin\alpha_2}{v_2} v1sinα1=v2sinα2这就是光学中的 Snell \small \textrm{Snell} Snell 折射定律,即光沿"最短路径"传播.

回过头来继续看我们的问题

  考虑质点经过第 k k k 层与第 k + 1 k+1 k+1 层,根据近似,质点在每层中速度不变,由上述结论知,要使时间最短, α k , α k + 1 \alpha_{k},\alpha_{k+1} αk,αk+1 应满足 sin ⁡ α k v k = sin ⁡ α k + 1 v k + 1 \frac{\sin\alpha_k}{v_k}=\frac{\sin\alpha_{k+1}}{v_{k+1}} vksinαk=vk+1sinαk+1对任意的 k k k 成立,则 sin ⁡ α k v k = C 1 ( 常数 ) \frac{\sin\alpha_k}{v_k}=C_1(\textbf{常数}) vksinαk=C1(常数)取极限:
  令 n → ∞ n\to\infin n,平行线间距趋于零,对于曲线上任意一点,都有 sin ⁡ α v = C 1 ( 常数 ) \frac{\sin\alpha}{v}=C_1(\textbf{常数}) vsinα=C1(常数)其中 α \alpha α 为该点切线与铅垂线夹角,如图所示.

∵ α + β = π 2 , y ′ = tan ⁡ β ∴ sin ⁡ α = cos ⁡ β = 1 ( tan ⁡ β ) 2 + 1 = 1 ( y ′ ) 2 + 1 \begin{aligned}&\because\alpha+\beta=\frac{\pi}{2},y'=\tan\beta\\&\therefore\sin\alpha=\cos\beta=\frac{1}{\sqrt{(\tan\beta)^2+1}}=\frac{1}{\sqrt{(y')^2+1}}\end{aligned} α+β=2π,y=tanβsinα=cosβ=(tanβ)2+1 1=(y)2+1 1再由 v = 2 g y v=\sqrt{2gy} v=2gy ,得 sin ⁡ α v = 1 2 g y ( y ′ ) 2 + 1 = C 1 ⇒ y ( 1 + ( y ′ ) 2 ) = C ( 常数 ) \frac{\sin\alpha}{v}=\frac{1}{\sqrt{2gy}\sqrt{(y')^2+1}}=C_1\Rightarrow y(1+(y')^2)=C(\textbf{常数}) vsinα=2gy (y)2+1 1=C1y(1+(y)2)=C(常数)

四、数学建模

  上面算是用物理方法得到的结论,下面让我们看看复杂而严谨的数学方法,首先需要一些数学基础,鉴于我也没学过,就抄一下.

1. 数学基础
(1) 泛函

  首先来介绍一种特殊的映射,泛函. 以前我们接触最多的映射是函数,即数集到数集的映射 f : R → R \small f:R\to R f:RR. 所谓的泛函,指的是这样一种映射:

  设 C \small C C 是一个函数集,对于 C \small C C 中任何一个元素 y ( x ) \small y(x) y(x),数集 B \small B B 中都有唯一的一个元素 J \small J J 与之对应,则称 J \small J J y ( x ) \small y(x) y(x)泛函数,记作 J = J [ y ( x ) ] J=J[y(x)] J=J[y(x)]  泛函的值是数,自变量是函数,泛函是函数的推广. 特别地,我们这里考虑的集合 C \small C C 中的元素是这样的函数 y ( a ) = y 1 , y ( b ) = y 2 y(a)=y_1,y(b)=y_2 y(a)=y1,y(b)=y2其中 y 1 , y 2 y_1,y_2 y1,y2 为常数, y ( x ) \small y(x) y(x) 充分光滑.

  几何上来看, C \small C C 中的元素均是由点 A ( a , y 1 ) \small A(a,y_1) A(a,y1) 到点 B ( b , y 2 ) B\small (b,y_2) B(b,y2) 的光滑曲线.

  一般情况下,泛函可以用以下积分式来表示 J [ y ( x ) ] = ∫ a b F ( x , y , y ′ ) d x J[y(x)]=\int_{a}^{b}F(x,y,y')dx J[y(x)]=abF(x,y,y)dx

(2) 泛函变分

  函数 y = f ( x ) \small y=f(x) y=f(x) 的微分 d y dy dy 指的是由于自变量 x 0 → x 0 + d x x_0\to x_0+dx x0x0+dx 所引起的因变量 y y y 的变化量的线性近似 d y = f ′ ( x 0 ) d x = d f d x ∣ x = x 0 d x dy=f'(x_0)dx=\frac{df}{dx}\Big|_{x=x_0}dx dy=f(x0)dx=dxdf x=x0dx  而泛函 J [ y ( x ) ] \small J[y(x)] J[y(x)] 的变分 δ J \small \delta J δJ 指的是由于自变量 y → y + δ y y\to y+\delta y yy+δy 所引起的因变量 J \small J J 的变化量的线性近似 δ J \small \delta J δJ.

  下面仿照函数微分来定义泛函变分.

  假定 y ( x ) ( ∈ C   ) \small y(x)(\in C\,) y(x)(C) F ( x , y , y ′ ) \small F(x,y,y') F(x,y,y) 充分光滑,考虑泛函 J [ y ( x ) ] = ∫ a b F ( x , y , y ′ ) d x J[y(x)]=\int_{a}^{b}F(x,y,y')dx J[y(x)]=abF(x,y,y)dx y y y 有微小变化 δ y \delta y δy ( δ y \delta y δy 也是 x x x 的函数) 时,函数 F \small F F 的改变量约等于微分,即 Δ F = F ( x , y + δ y , y ′ + δ y ′ ) − F ( x , y , y ′ ) ≈ ∂ F ∂ y δ y + ∂ F ∂ y ′ δ y ′ = d F \Delta F=F(x,y+\delta y,y'+\delta y')-F(x,y,y')\approx \frac{\partial F}{\partial y}\delta y+\frac{\partial F}{\partial y'}\delta y'=dF ΔF=F(x,y+δy,y+δy)F(x,y,y)yFδy+yFδy=dF则其泛函的改变量约等于变分 δ J \small \delta J δJ Δ J = J [ y ( x ) + δ y ( x ) ] − J [ y ( x ) ] = ∫ a b [ F ( x , y + δ y , y ′ + δ y ′ ) − F ( x , y , y ′ ) ] d x ≈ ∫ a b ( ∂ F ∂ y δ y + ∂ F ∂ y ′ δ y ′ ) d x = δ J \begin{aligned}\Delta J&=J[y(x)+\delta y(x)]-J[y(x)]\\&=\int_{a}^{b}[F(x,y+\delta y,y'+\delta y')-F(x,y,y')]dx\\&\approx \int_{a}^{b}\Big(\frac{\partial F}{\partial y}\delta y+\frac{\partial F}{\partial y'}\delta y'\Big)dx\\&=\delta J \end{aligned} ΔJ=J[y(x)+δy(x)]J[y(x)]=ab[F(x,y+δy,y+δy)F(x,y,y)]dxab(yFδy+yFδy)dx=δJ

(3) 泛函极值

在一元函数 y = y ( x ) y=y(x) y=y(x) 中, y y y x = x 0 x=x_0 x=x0 处取极值的必要条件是 d y d x ∣ x = x 0 = 0 \frac{dy}{dx}\Big|_{x=x_0}=0 dxdy x=x0=0下面证明泛函 J \small J J 取极值的必要条件是 δ J = 0 \delta J=0 δJ=0或者 ∂ F ∂ y − d d x ( ∂ F ∂ y ′ ) = 0 \frac{\partial F}{\partial y}-\frac{d}{dx}\Big(\frac{\partial F}{\partial y'}\Big)=0 yFdxd(yF)=0
  设泛函 J \small J J y = y ( x ) y=y(x) y=y(x) 处取极值,取 δ y \delta y δy 的特殊形式: δ y = ϵ φ ( x ) \delta y=\epsilon \varphi(x) δy=ϵφ(x)其中 ϵ \epsilon ϵ 为任意小的实数, φ ( x ) \varphi(x) φ(x) 为充分光滑的任意函数,且满足 φ ( a ) = φ ( b ) = 0 \varphi(a)=\varphi(b)=0 φ(a)=φ(b)=0则函数 y + δ y ∈ C \small y+\delta y\in C y+δyC. 令 G ( ϵ ) = J [ y ( x ) + ϵ φ ( x ) ] = J [ y ( x ) ] + δ J = J [ y ( x ) ] + ϵ ∫ a b ( ∂ F ∂ y φ ( x ) + ∂ F ∂ y ′ φ ′ ( x ) ) d x \begin{aligned}G(\epsilon)&=J[y(x)+\epsilon \varphi(x)]\\&=J[y(x)]+\delta J\\&=J[y(x)]+\epsilon\int_{a}^{b}\Big(\frac{\partial F}{\partial y}\varphi(x)+\frac{\partial F}{\partial y'} \varphi'(x)\Big)dx\end{aligned} G(ϵ)=J[y(x)+ϵφ(x)]=J[y(x)]+δJ=J[y(x)]+ϵab(yFφ(x)+yFφ(x))dx(上式中第二个等号应该是约等号,但因为 ϵ \epsilon ϵ 是任意小的实数,同时为了证明能够顺利进行,暂且允许这么一点瑕疵)
  由 J \small J J y = y ( x ) y=y(x) y=y(x) 处取极值可知, G ( ϵ ) \small G(\epsilon) G(ϵ) ϵ = 0 \epsilon=0 ϵ=0 处取极值,则有 d G d ϵ ∣ ϵ = 0 = ∫ a b ( ∂ F ∂ y φ ( x ) + ∂ F ∂ y ′ φ ′ ( x ) ) d x = 0 \frac{dG}{d\epsilon}\Big|_{\epsilon=0}=\int_{a}^{b}\Big(\frac{\partial F}{\partial y}\varphi(x)+\frac{\partial F}{\partial y'} \varphi'(x)\Big)dx=0 dϵdG ϵ=0=ab(yFφ(x)+yFφ(x))dx=0两端同乘 ϵ \epsilon ϵ,则有 δ J = ∫ a b ( ∂ F ∂ y ϵ φ ( x ) + ∂ F ∂ y ′ ϵ φ ′ ( x ) ) d x = 0 \delta J=\int_{a}^{b}\Big(\frac{\partial F}{\partial y}\epsilon\varphi(x)+\frac{\partial F}{\partial y'}\epsilon\varphi'(x)\Big)dx=0 δJ=ab(yFϵφ(x)+yFϵφ(x))dx=0 下证第二个必要条件: ∂ F ∂ y − d d x ( ∂ F ∂ y ′ ) = 0 \frac{\partial F}{\partial y}-\frac{d}{dx}\Big(\frac{\partial F}{\partial y'}\Big)=0 yFdxd(yF)=0
0 = ∫ a b ( ∂ F ∂ y φ ( x ) + ∂ F ∂ y ′ φ ′ ( x ) ) d x = ∫ a b ∂ F ∂ y φ ( x ) d x + ∫ a b ∂ F ∂ y ′ d ( φ ( x ) ) (应用分部积分) = ∫ a b ∂ F ∂ y φ ( x ) d x + ∂ F ∂ y ′ φ ( x ) ∣ a b − ∫ a b φ ( x ) d d x ( ∂ F ∂ y ′ ) d x ( φ ( a ) = φ ( b ) = 0 ) = ∫ a b [ ∂ F ∂ y − d d x ( ∂ F ∂ y ′ ) ] φ ( x ) d x \begin{aligned}0&=\int_{a}^{b}\Big(\frac{\partial F}{\partial y}\varphi(x)+\frac{\partial F}{\partial y'} \varphi'(x)\Big)dx\\&=\int_{a}^{b}\frac{\partial F}{\partial y}\varphi(x)dx+\int_{a}^{b}\frac{\partial F}{\partial y'} d(\varphi(x)) \quad\textbf{(应用分部积分)}\\&=\int_{a}^{b}\frac{\partial F}{\partial y}\varphi(x)dx+\frac{\partial F}{\partial y'} \varphi(x)\Big|_a^b-\int_{a}^{b}\varphi(x)\frac{d}{dx}\Big(\frac{\partial F}{\partial y'}\Big)dx\quad (\varphi(a)=\varphi(b)=0)\\&= \int_{a}^{b}\bigg[\frac{\partial F}{\partial y}-\frac{d}{dx}\Big(\frac{\partial F}{\partial y'}\Big)\bigg]\varphi(x)dx\end{aligned} 0=ab(yFφ(x)+yFφ(x))dx=abyFφ(x)dx+abyFd(φ(x))(应用分部积分)=abyFφ(x)dx+yFφ(x) ababφ(x)dxd(yF)dx(φ(a)=φ(b)=0)=ab[yFdxd(yF)]φ(x)dx
这里需要介绍一个引理:

  设 E = { g   ∣   g ( a ) = g ( b ) = 0   ,   g ∈ C 1 [ a , b ] } \small E=\{g\,|\,g(a)=g(b)=0\,,\,g\in C^1[a,b]\} E={gg(a)=g(b)=0,gC1[a,b]},即由在 [ a , b ] \small [a,b] [a,b] 上连续且端点函数值为零的函数组成的集合,若 [ a , b ] \small [a,b] [a,b] 上的连续函数 f f f 满足:

   ∀   g ∈ E \forall\, g\in E gE,都有 ∫ a b f ( x ) g ( x ) d x = 0 \int_a^bf(x)g(x)dx=0 abf(x)g(x)dx=0 f ( x ) ≡ 0 f(x)\equiv 0 f(x)0.

  套用该引理,由 φ ( x ) \varphi(x) φ(x) 的任意性,可得 ∂ F ∂ y − d d x ( ∂ F ∂ y ′ ) = 0 \frac{\partial F}{\partial y}-\frac{d}{dx}\Big(\frac{\partial F}{\partial y'}\Big)=0 yFdxd(yF)=0这个式子被称为欧拉—拉格朗日方程,简记为 E \textrm{E} E- L \textrm{L} L 方程.

  至此,泛函取极值的两个必要条件证毕!

2. 数学分析

下面对最速降线问题重新进行数学上的分析.

  设质点经过曲线上点 P ( x , y ) \small P(x,y) P(x,y) 时速度为 v v v,由能量守恒定律 m g y = 1 2 m v 2 mgy=\frac{1}{2}mv^2 mgy=21mv2解得 v = 2 g y v=\sqrt{2gy} v=2gy . 弧微分 d s = 1 + ( y ′ ) 2   d x ds=\sqrt{1+(y')^2}\,dx ds=1+(y)2 dx,经过这一小段弧时近似认为速度不变,则所需时间为 d t = d s v = 1 + ( y ′ ) 2 2 g y d x dt=\frac{ds}{v}=\frac{\sqrt{1+(y')^2}}{\sqrt{2gy}}dx dt=vds=2gy 1+(y)2 dx A A A 下滑到 B B B 所需总时间 T = ∫ d t = ∫ 0 c 1 + ( y ′ ) 2 2 g y d x = 1 2 g ∫ 0 c 1 + ( y ′ ) 2 y d x T=\int dt=\int_0^c\frac{\sqrt{1+(y')^2}}{\sqrt{2gy}}dx=\frac{1}{\sqrt{2g}}\int_0^c\frac{\sqrt{1+(y')^2}}{\sqrt{y}}dx T=dt=0c2gy 1+(y)2 dx=2g 10cy 1+(y)2 dx J [ y ( x ) ] = ∫ 0 c 1 + ( y ′ ) 2 y d x J[y(x)]=\int_0^c\frac{\sqrt{1+(y')^2}}{\sqrt{y}}dx J[y(x)]=0cy 1+(y)2 dx J \small J J y ( x ) y(x) y(x) 的泛函,被积函数为 F ( y , y ′ ) \small F(y,y') F(y,y) 的形式,显然也是 F ( x , y , y ′ ) \small F(x,y,y') F(x,y,y) 的形式.

  我们的目标是求 y = arg min ⁡ C   T = arg min ⁡ C   J [ y ( x ) ] y=\argmin_C \,T=\argmin_C \,J[y(x)] y=CargminT=CargminJ[y(x)] J [ y ( x ) ] \small J[y(x)] J[y(x)] y y y 处取极值,由第二必要条件(   E \,\textrm{E} E- L \textrm{L} L 方程): ∂ F ∂ y − d d x ( ∂ F ∂ y ′ ) = 0 \frac{\partial F}{\partial y}-\frac{d}{dx}\Big(\frac{\partial F}{\partial y'}\Big)=0 yFdxd(yF)=0于是 d d x ( F ( y , y ′ ) − y ′ ∂ F ∂ y ′ ) = ∂ F ∂ y y ′ + ∂ F ∂ y ′ y ′ ′ − ( y ′ ′ ∂ F ∂ y ′ + y ′ d d x ( ∂ F ∂ y ′ ) ) = y ′ ( ∂ F ∂ y − d d x ( ∂ F ∂ y ′ ) ) = 0 \begin{aligned}\frac{d}{dx}\Big(F(y,y')−y'\frac{\partial F}{\partial y'}\Big)&=\frac{\partial F}{\partial y}y'+\frac{\partial F}{\partial y'}y''-\Big(y''\frac{\partial F}{\partial y'}+y' \frac{d}{dx}\Big(\frac{\partial F}{\partial y'}\Big)\Big)\\&=y'\Big(\frac{\partial F}{\partial y}-\frac{d}{dx}\Big(\frac{\partial F}{\partial y'}\Big)\Big)\\&=0\end{aligned} dxd(F(y,y)yyF)=yFy+yFy′′(y′′yF+ydxd(yF))=y(yFdxd(yF))=0 F ( y , y ′ ) − y ′ ∂ F ∂ y ′ = C 1 ( 常数 ) F(y,y')−y'\frac{\partial F}{\partial y'}= C_1(\textbf{常数}) F(y,y)yyF=C1(常数) F ( y , y ′ ) = 1 + ( y ′ ) 2 y ,    ∂ F ∂ y ′ = 1 y y ′ 1 + ( y ′ ) 2 F(y,y')=\frac{\sqrt{1+(y')^2}}{\sqrt{y}},\,\,\frac{\partial F}{\partial y'}=\frac{1}{\sqrt{y}}\frac{y'}{\sqrt{1+(y')^2}} F(y,y)=y 1+(y)2 ,yF=y 11+(y)2 y 代入,得 1 + ( y ′ ) 2 y − y ′ y ′ y 1 + ( y ′ ) 2 = 1 y   1 + ( y ′ ) 2 = C 1 ( 常数 ) \frac{\sqrt{1+(y')^2}}{\sqrt{y}}-y'\frac{y'}{\sqrt{y}\sqrt{1+(y')^2}}=\frac{1}{\sqrt{y}\,\sqrt{1+(y')^2}}= C_1(\textbf{常数}) y 1+(y)2 yy 1+(y)2 y=y 1+(y)2 1=C1(常数)两边平方,则 y ( 1 + ( y ′ ) 2 ) = C ( 常数 ) y(1+(y')^2)= C(\textbf{常数}) y(1+(y)2)=C(常数)

五、曲线求解

通过两种方法得到的结果相同,即最速曲线应满足 y ( 1 + ( y ′ ) 2 ) = C ( 常数 ) y(1+(y')^2)=C(\textbf{常数}) y(1+(y)2)=C(常数)下面进行求解.

  根据上图 y ′ = tan ⁡ β = cot ⁡ α y'=\tan\beta=\cot\alpha y=tanβ=cotα,因为质点一直向下滑(如果向上,肯定不是最优曲线),所以 0 ≤ α ≤ π / 2 0\leq\alpha\leq\pi/2 0απ/2.

  令 2 R = C 2R=C 2R=C,令 y ′ = d y / d x = cot ⁡ ( θ / 2 ) \displaystyle y'=dy/dx=\cot(\theta/2) y=dy/dx=cot(θ/2),则 θ = 2 α \theta=2\alpha θ=2α,所以 0 ≤ θ ≤ π 0\leq\theta\leq\pi 0θπ.

  设 x x x θ \theta θ 的函数,即 x = x ( θ ) x=x(\theta) x=x(θ),我们的目标是求 x ( θ ) x(\theta) x(θ).

1 + cot ⁡ 2 θ 2 = 1 + cos ⁡ 2 θ 2 sin ⁡ 2 θ 2 = sin ⁡ 2 θ 2 + cos ⁡ 2 θ 2 sin ⁡ 2 θ 2 = 1 sin ⁡ 2 θ 2 = 2 1 − cos ⁡ θ 1+\cot^2\frac{\theta}{2}=1+\frac{\cos^2\displaystyle\frac{\theta}{2}}{\sin^2\displaystyle\frac{\theta}{2}}=\frac{\sin^2\displaystyle\frac{\theta}{2}+\cos^2\displaystyle\frac{\theta}{2}}{\sin^2\displaystyle\frac{\theta}{2}}=\frac{1}{\sin^2\displaystyle\frac{\theta}{2}}=\frac{2}{1-\cos\theta} 1+cot22θ=1+sin22θcos22θ=sin22θsin22θ+cos22θ=sin22θ1=1cosθ2所以 y ( 1 + ( y ′ ) 2 ) = y ( 1 + cot ⁡ 2 θ 2 ) = 2 y 1 − cos ⁡ θ = 2 R ⇒ y = R ( 1 − cos ⁡ θ ) y(1+(y')^2)=y(1+\cot^2\frac{\theta}{2})=\frac{2y}{1-\cos\theta}=2R\Rightarrow y=R(1-\cos\theta) y(1+(y)2)=y(1+cot22θ)=1cosθ2y=2Ry=R(1cosθ) d y d x = cot ⁡ θ 2 = cos ⁡ θ 2 sin ⁡ θ 2 ,    d y d θ = R sin ⁡ θ = 2 R sin ⁡ θ 2 cos ⁡ θ 2 \frac{dy}{dx}=\cot\frac{\theta}{2}=\frac{\cos\displaystyle\frac{\theta}{2}}{\sin\displaystyle\frac{\theta}{2}},\,\,\frac{dy}{d\theta}=R\sin\theta=2R\sin\frac{\theta}{2}\cos\frac{\theta}{2} dxdy=cot2θ=sin2θcos2θ,dθdy=Rsinθ=2Rsin2θcos2θ x ′ ( θ ) = d x d θ = d y d θ / d y d x = 2 R sin ⁡ θ 2 cos ⁡ θ 2 sin ⁡ θ 2 cos ⁡ θ 2 = 2 R sin ⁡ 2 θ 2 = R ( 1 − cos ⁡ θ ) x'(\theta)=\frac{dx}{d\theta}=\frac{dy}{d\theta}/\frac{dy}{dx}=2R\sin\frac{\theta}{2}\cos\frac{\theta}{2}\frac{\sin\displaystyle\frac{\theta}{2}}{\cos\displaystyle\frac{\theta}{2}}=2R\sin^2\frac{\theta}{2}=R(1-\cos\theta) x(θ)=dθdx=dθdy/dxdy=2Rsin2θcos2θcos2θsin2θ=2Rsin22θ=R(1cosθ)所以 x ( θ ) = ∫ x ′ ( θ ) d θ = ∫ R ( 1 − cos ⁡ θ ) d θ = R ( θ − sin ⁡ θ ) + C 1 x(\theta)=\int x'(\theta)d\theta=\int R(1-\cos\theta)d\theta=R(\theta-\sin\theta)+C_1 x(θ)=x(θ)dθ=R(1cosθ)dθ=R(θsinθ)+C1

得到 x , y x,y x,y 关于 θ \theta θ 的参数方程 { x ( θ ) = R ( θ − sin ⁡ θ ) + C 1 y ( θ ) = R ( 1 − cos ⁡ θ ) ,   0 ≤ θ ≤ π \begin{cases}x(\theta)=R(\theta-\sin\theta)+C_1\\y(\theta)=R(1-\cos\theta)\end{cases},\,0\leq\theta\leq\pi {x(θ)=R(θsinθ)+C1y(θ)=R(1cosθ),0θπ还有两个待定系数 R , C 1 \small R,C_1 R,C1,别忘了我们还有两个边界条件没用呢,即 y ( 0 ) = 0 ,   y ( c ) = H y(0)=0,\,y(c)=H y(0)=0,y(c)=H先消去参数 θ \theta θ,作变量代换 θ = arccos ⁡ ( 1 − y R ) ,   0 ≤ θ ≤ π \theta=\arccos(1-\frac{y}{R}),\,0\leq\theta\leq\pi θ=arccos(1Ry),0θπ x = R arccos ⁡ ( 1 − y R ) − R 2 y R − y 2 R 2 + C 1 = R arccos ⁡ ( 1 − y R ) − y ( 2 R − y ) + C 1 \begin{aligned}x&=R\arccos(1-\frac{y}{R})-R\sqrt{2\frac{y}{R}-\frac{y^2}{R^2}}+C_1\\&=R\arccos(1-\frac{y}{R})-\sqrt{y(2R-y)}+C_1\end{aligned} x=Rarccos(1Ry)R2RyR2y2 +C1=Rarccos(1Ry)y(2Ry) +C1将边界条件换种描述方式,即 x ( 0 ) = 0 , x ( H ) = c x(0)=0,x(H)=c x(0)=0,x(H)=c将其代入方程,得 x ( 0 ) = R arccos ⁡ ( 1 ) + C 1 = C 1 = 0 x ( H ) = R arccos ⁡ ( 1 − H R ) − H ( 2 R − H ) + 0 = c \begin{aligned}x(0)&=R\arccos(1)+C_1=C_1=0\\x(H)&=R\arccos(1-\frac{H}{R})-\sqrt{H(2R-H)}+0=c\end{aligned} x(0)x(H)=Rarccos(1)+C1=C1=0=Rarccos(1RH)H(2RH) +0=c C 1 = 0 , R \small C_1=0,R C1=0,R 的值可以由 H , c \small H,c H,c 确定. 参数方程变为 { x ( θ ) = R ( θ − sin ⁡ θ ) y ( θ ) = R ( 1 − cos ⁡ θ ) ,   0 ≤ θ ≤ π \begin{cases}x(\theta)=R(\theta-\sin\theta)\\y(\theta)=R(1-\cos\theta)\end{cases},\,0\leq\theta\leq\pi {x(θ)=R(θsinθ)y(θ)=R(1cosθ),0θπ其实 θ \theta θ 的值只有在 c / H = π / 2 \small c/H=\pi/2 c/H=π/2 时才能取到 π \pi π (看完下一部分你便知晓原因了),其余情况下 θ < π \theta<\pi θ<π.

  可能有些读者已经看出来了,上述参数方程正是滚轮线(也叫摆线),参数 R \small R R 表示滚轮半径. 所以最速降线是滚轮线的一部分.

六、结果解释

滚轮线的参数方程推导过程如下:

  由于轨迹是无摩擦匀速滚动产生的,所以轮与地面接触点 B \small B B 的速度始终为 0 \small 0 0 B B B 点为瞬时旋转中心.

  设转过的角度为 θ \theta θ,角速度为 w w w,则圆心 A \small A A 的速度 v = w R v=wR v=wR,移动的距离 E A = v t = R w t = R θ \small EA=vt=Rwt=R\theta EA=vt=Rwt=. 设点 C \small C C 坐标 ( x ( θ ) , y ( θ ) ) \small (x(\theta),y(\theta)) (x(θ),y(θ)),则 E C = x ( θ ) , B D = y ( θ ) \small EC=x(\theta),BD=y(\theta) EC=x(θ),BD=y(θ).

E A = E C + C A ⇒ R θ = x ( θ ) + R sin ⁡ θ B A = B D + D A ⇒ R = y ( θ ) + R cos ⁡ θ \begin{aligned}EA=EC+CA&\Rightarrow R\theta=x(\theta)+R\sin\theta \\ BA=BD+DA&\Rightarrow R=y(\theta)+R\cos\theta\end{aligned} EA=EC+CABA=BD+DA=x(θ)+RsinθR=y(θ)+Rcosθ所以滚轮线的参数方程为 { x ( θ ) = R ( θ − sin ⁡ θ ) y ( θ ) = R ( 1 − cos ⁡ θ ) ,   0 ≤ θ ≤ 2 π \begin{cases}x(\theta)=R(\theta-\sin\theta)\\y(\theta)=R(1-\cos\theta)\end{cases},\,0\leq\theta\leq2\pi {x(θ)=R(θsinθ)y(θ)=R(1cosθ),0θ2π参数 θ \theta θ 表示转过的角度.

  下面来验证滚轮线就是最速降线,根据物理建模的结论(即下面这个图,其中 α \alpha α 为该点切线与铅垂线夹角):

最速降线需满足 sin ⁡ α v = C ( 常数 ) \frac{\sin\alpha}{v}=C(常数) vsinα=C(常数) v = 2 g y v=\sqrt{2gy} v=2gy ,得 sin ⁡ α y = C ( 常数 ) ⇒ sin ⁡ 2 α y = C ( 常数 ) \frac{\sin\alpha}{\sqrt{y}}=C(常数)\Rightarrow\frac{\sin^2\alpha}{y}=C(常数) y sinα=C(常数)ysin2α=C(常数)
对滚轮线的图作些变动

  因为 B F \small BF BF 为直径,所以 B C ⊥ C F \small BC\perp CF BCCF.
  由 B \small B B 点瞬时速度为 0 \small 0 0,所以 C \small C C 点的速度方向与 B C \small BC BC 垂直.
  即 C F → \small \overrightarrow{CF} CF 为速度方向,直线 C F \small CF CF 为滚轮线的切线.

  则两张图中的 α \alpha α 是一致的.
  因为 C G / / B F \small CG//BF CG//BF,所以 ∠ A F C = ∠ F C G = α \small \angle AFC=\angle FCG=\alpha AFC=FCG=α.
  由弦切角定理, ∠ G B C = ∠ A F C = α \small \angle GBC=\angle AFC=\alpha GBC=AFC=α. 所以 y = C G = B C sin ⁡ α = B F sin ⁡ α sin ⁡ α = B F sin ⁡ 2 α = 2 R sin ⁡ 2 α y=CG=BC\sin\alpha=BF\sin\alpha\sin\alpha=BF\sin^2\alpha=2R\sin^2\alpha y=CG=BCsinα=BFsinαsinα=BFsin2α=2Rsin2α所以 sin ⁡ 2 α y = 1 2 R ( 常数 ) \frac{\sin^2\alpha}{y}=\frac{1}{2R}(\textbf{常数}) ysin2α=2R1(常数)验证完毕.

最速降线是滚轮线这一巧合已经足以让人称奇,下面来看一件更加巧合的事情.

  考虑轮子上点 C \small C C 的速度,设此时 C \small C C 的纵坐标也是 y y y,对应角度为 α \alpha α, 根据上述过程,有 y = 2 R sin ⁡ 2 α \small y=2R\sin^2\alpha y=2Rsin2α. 因为点 B \small B B 是瞬时旋转中心,所以 C \small C C 的速度 v c = w ⋅ B C = w ⋅ 2 R sin ⁡ α \small v_c=w\cdot BC=w\cdot 2R\sin\alpha vc=wBC=w2Rsinα.

  我们已经知道,如果质点沿最速降线下滑,则其在 ( x , y ) \small (x,y) (x,y) 处的速度为 v = 2 g y v=\sqrt{2gy} v=2gy . 将 y = 2 R sin ⁡ 2 α \small y=2R\sin^2\alpha y=2Rsin2α 代入,得 v = 2 g ⋅ 2 R sin ⁡ 2 α = 2 g R sin ⁡ α \small v=\sqrt{2g\cdot 2R\sin^2\alpha}=2\sqrt{gR}\sin\alpha v=2g2Rsin2α =2gR sinα.

  对比这两个式子 v c = w ⋅ 2 R sin ⁡ α v_c=w\cdot 2R\sin\alpha vc=w2Rsinα v = 2 g R sin ⁡ α v=2\sqrt{gR}\sin\alpha v=2gR sinα w = g R \displaystyle w=\sqrt{\frac{g}{R}} w=Rg ,则 v = v c v=v_c v=vc. 这说明了什么?我想大家应该已经清楚了. 即若轮子旋转的角速度与半径之间满足 w = g / R \small w=\sqrt{g/R} w=g/R ,不仅得到的曲线是最速降线,且轮上点的运动速度与沿这条曲线运动(可能是下滑也可能是上滑)的质点的速度相同, How amazing it is! \textrm{How amazing it is!} How amazing it is!

(来源:下方B站视频)


七、补充资料

B站视频:最速降线问题——最快下滑路径为什么是旋轮线?(中英字幕)


维基百科:
1. Brachistochrone_curve(最速降线) (里面有"神仙"们的解法)
2. 旋轮线 (里面有其他有趣的性质)



参考文献:
1.于涛.数学物理方程与特殊函数
[M].北京:科学出版社,2008.


Plus: 如有错误、可以改进的地方、或任何想说的,请在评论区留言!

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值