最速曲线


两点之间一小球滚下,不是之间的连线下降最快,而是小球在最速曲线上滚下最快。

经过论证和科学实验,上图红色路线是最快的路线,此曲线也因此被称为“最速曲线”。

四个颜色的小球在“最速曲线”的不同位置同时出发,却在同一时刻抵达终点。

顺势借力 开拓创新

从起点到终点,有无数条道路,直线与折线是大多数人会选择的路线。开拓思维,创造性地选择曲线路线,正确的选择是成功的一半。从起点到终点,小球能够滚动,在于其不安现状的同时能够顺势而行,借力地心引力才能让自己不断向前。同样,在我们的业务、事业、人生中,都需要不断的创新开拓,创新思路、方法,开拓市场、视野,借力顾客伙伴、数码科技。

不忘初衷 方得始终

从起点到终点,小球一直看着终点的目标,自始至终都是朝着自己的目标前行,即使途中有短暂地偏离方向也不放弃自己所追求的终点,而恰恰是这种坚持与执着成就了最快抵达目的地的捷径。尼采曾说:一切美好的事物都是曲折地接近自己的目标,一切笔直都是骗人的。业务有障碍,事业有起伏,人生有曲折,无论何时何地,我们都要不忘初衷。只有不忘记自己最初的想法,才会找对人生的方向,才会坚定我们的追求,才能有始有终地去完成自己的梦想。

现在行动 为时未晚


Python最速下降法是一种求解无约束优化问题的迭代算法,其核心思想是在每一步迭代中,沿着当前点的梯度方向进行搜索,以找到下降最快的方向,并以此更新当前点。下面是Python实现最速下降法的迭代曲线代码: ```python import numpy as np import matplotlib.pyplot as plt def f(x): return x[0]**2 + 2*x[1]**2 def grad_f(x): return np.array([2*x[0], 4*x[1]]) def backtracking_line_search(x, p, alpha=0.5, beta=0.8): t = 1 while f(x + t*p) > f(x) + alpha*t*np.dot(grad_f(x), p): t *= beta return t def steepest_descent(x0, tol=1e-6, max_iter=1000): x = x0 iter_num = 0 iter_x = [x] while np.linalg.norm(grad_f(x)) > tol and iter_num < max_iter: p = -grad_f(x) t = backtracking_line_search(x, p) x = x + t*p iter_x.append(x) iter_num += 1 return iter_x x0 = np.array([1, 1]) iter_x = steepest_descent(x0) plt.plot([x[0] for x in iter_x], [x[1] for x in iter_x], '-o') plt.xlabel('x') plt.ylabel('y') plt.title('Steepest Descent Method') plt.show() ``` 其中,`f(x)`是目标函数,`grad_f(x)`是目标函数的梯度,`backtracking_line_search(x, p, alpha=0.5, beta=0.8)`是回溯线性搜索函数,`steepest_descent(x0, tol=1e-6, max_iter=1000)`是最速下降法的主函数,`x0`是初始点,`tol`是迭代停止的精度,`max_iter`是最大迭代次数。 下面是最速下降法的迭代曲线图: ![steepest_descent](https://img-blog.csdn.net/20180528163412909?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2N6aG9uZ3hp/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/q/75)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值