循环数组最大子段和
分析:
(1)笨方法,我们可以用普通最大子段和的方法解决这个问题。我们从每个位置“断开”环,然后按普通的最大子段和的方法去做。这样做的复杂度是O(n^2)。
(2)巧妙点的方法,我们之所以要从某个位置切开是因为循环的最大子段和可能是跨越一部分头和尾。
如上图,最优解可能是0..i, j + 1.. n – 1两段,那这时,其实中间i + 1..j是个“最小子段和”,因为总和是一定得嘛。所以“循环数组得最大子段和”问题,可以把环从连续的最小子段位置断开,然后求出最优解 = max(普通的最大子段和, 总和 – 普通的“最小子段和”)
求最小子段和,显然也可以用最大子段和的方法求一次就可以了(把原数组变为相反数,求最大即是最小)。所以循环数组的最大子段和,实际上是求了两次最大子段和而已。
1050 循环数组最大子段和
基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题
N个整数组成的循环序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的连续的子段和的最大值(循环序列是指n个数围成一个圈,因此需要考虑a[n-1],a[n],a[1],a[2]这样的序列)。当所给的整数均为负数时和为0。
例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13。和为20。
Input
第1行:整数序列的长度N(2 <= N <= 50000)
第2 - N+1行:N个整数 (-10^9 <= S[i] <= 10^9)
Output
输出循环数组的最大子段和。
Input示例
6
-2
11
-4
13
-5
-2
Output示例
20
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int mat[50005];
int n;
long long maxsum()
{
long long temp=0;
long long maxn=0;
for(int i=0;i<n;i++)
{
if(temp<0)
temp=mat[i];
else
temp+=mat[i];
maxn=max(maxn,temp);
}
return maxn;
}
int main()
{
long long sum=0;
scanf("%d",&n);
for(int i=0;i<n;i++) {
scanf("%d",&mat[i]);
sum+=mat[i];
}
long long max1=maxsum();
for(int i=0;i<n;i++) {
mat[i]=-mat[i];
}
long long max2=maxsum();
printf("%lld\n",max1>(sum+max2)?max1:(sum+max2));//这里是加,因为之前是负数。
return 0;
}