resnet系列网络

解决的问题

resnet的提出,是为了解决随着网络深度的增加,出现的精度退化问题,导致更高的训练误差。resnet提升了网络的深层表达能力。

创新点

为了解决优化的难题,提出了残差块结构。
假设原始的映射为H(x),则残差网络拟合的映射为:F(x)=H(x)-x。
在这里插入图片描述

网络结构

在这里插入图片描述
其中,残差块结构有两种:
ResNet-50以下(resnet18/34)使用两个3x3卷积结构。
ResNet-50/101/152采用bottleneck结构,先降维后升维,这样可以减少网络参数量。
在这里插入图片描述

resnet和vgg参数量对比

以resnet50和vgg16为例进行对比:
同等输入条件:Input_shape = (224,224,3),classes=1000

resnet50参数量:

Total params: 25,636,712
Trainable params: 25,583,592
Non-trainable params: 53,120

vgg16参数量

Total params: 138,357,544
Trainable params: 138,357,544
Non-trainable params: 0

vgg16参数量(未加最后两层全连接FC-4096)

Total params: 39,803,688
Trainable params: 39,803,688
Non-trainable params: 0

可以看出,尽管resnet50的层数更多,但是由于shortcut和bottleneck的应用,使其参数量更少。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值