1. 对称矩阵
A = A ⊤ A=A^{\top} A=A⊤
性质
- 特征值都是实数
- 可选择一组正交的特征向量
通常情况下
A
=
S
Λ
S
−
1
A=S\Lambda S^{-1}
A=SΛS−1
对称矩阵
A
=
Q
Λ
Q
−
1
A=Q\Lambda Q^{-1}
A=QΛQ−1
Q
Q
Q为标准正交矩阵
为什么特征值为实数
A X = λ X ⟺ A ‾ X ‾ = λ ‾ X ‾ AX=\lambda X \iff \overline{A}\overline{X}=\overline\lambda\overline X AX=λX⟺AX=λX
如果
A
A
A为实矩阵
A
X
=
λ
X
⟺
A
X
‾
=
λ
X
‾
AX=\lambda X \iff A\overline{X} =\overline{\lambda X}
AX=λX⟺AX=λX
将其转置一下
X
⊤
‾
A
⊤
=
X
⊤
‾
λ
⊤
‾
\overline{X^{\top}}A^{\top} =\overline{X^{\top}}\overline{\lambda^{\top}}
X⊤A⊤=X⊤λ⊤
根据对称性
A
⊤
=
A
A^{\top} = A
A⊤=A
得到
X
⊤
‾
A
=
X
⊤
‾
λ
⊤
‾
\overline{X^{\top}}A =\overline{X^{\top}}\overline{\lambda^{\top}}
X⊤A=X⊤λ⊤
两边同乘
X
X
X
X
⊤
‾
A
X
=
X
⊤
‾
λ
⊤
‾
X
\overline{X^{\top}}AX =\overline{X^{\top}}\overline{\lambda^{\top}}X
X⊤AX=X⊤λ⊤X
转换一下
X
⊤
‾
λ
X
=
X
⊤
‾
λ
⊤
‾
X
\overline{X^{\top}}\lambda X =\overline{X^{\top}}\overline{\lambda^{\top}}X
X⊤λX=X⊤λ⊤X
又有
X
⊤
‾
X
≠
0
\overline{X^{\top} }X \ne 0
X⊤X=0
所以
λ
=
λ
‾
⊤
\lambda=\overline\lambda^{\top}
λ=λ⊤
所以
λ
∈
R
\lambda \in R
λ∈R
对于复数来说
X
⊤
‾
X
=
[
X
1
‾
X
2
‾
⋯
]
[
X
1
X
2
⋯
]
=
X
1
‾
X
1
+
X
2
‾
X
2
+
⋯
=
(
l
e
n
g
t
h
)
2
>
0
\overline{X^{\top} }X = \begin{bmatrix} \overline{X1} \overline{X2}\cdots \end{bmatrix} \begin{bmatrix} X1\\ X2\\\cdots \end{bmatrix}= \overline{X1}X1+ \overline{X2}X2+\cdots=(length)^2 \gt 0
X⊤X=[X1X2⋯]
X1X2⋯
=X1X1+X2X2+⋯=(length)2>0
好矩阵
- real λ \lambda λ
- perp X
即 A = A ‾ ⊤ A=\overline{A}^{\top} A=A⊤
对于每个对称矩阵
A
=
A
⊤
A=A^{\top}
A=A⊤
可以分解为
A
=
Q
Λ
Q
⊤
=
[
q
1
q
2
⋯
]
[
λ
1
λ
2
⋯
]
[
q
1
⊤
q
2
⊤
⋯
]
=
λ
1
q
1
q
1
⊤
+
λ
2
q
2
q
2
⊤
+
⋯
\begin{align} A &=Q\Lambda Q^{\top} \nonumber &=[q_1\ q_2\cdots] \begin{bmatrix} \lambda_1&&\\ &\lambda_2&\\ & & \cdots& \end{bmatrix} \begin{bmatrix} q_1^{\top}\\q_2^{\top}\\ \cdots \end{bmatrix} \end{align}= \lambda_1q_1q_1^{\top}+\lambda_2q_2q_2^{\top}+\cdots
A=QΛQ⊤=[q1 q2⋯]
λ1λ2⋯
q1⊤q2⊤⋯
=λ1q1q1⊤+λ2q2q2⊤+⋯
每个对称矩阵都是一组投影矩阵的组合。
主元符号与特征值符号一致。
2. 正定矩阵
正定矩阵是对称矩阵。
- ∀ λ > 0 \forall \lambda \gt 0 ∀λ>0
- ∀ p i v o t > 0 \forall pivot \gt 0 ∀pivot>0
- ∀ k × k 行列式 > 0 \forall k \times k 行列式 \gt0 ∀k×k行列式>0
例子
[
5
2
2
3
]
\begin{bmatrix} 5 & 2\\2 & 3\\ \end{bmatrix}
[5223]
主元
5
11
/
5
5\ 11/5
5 11/5
λ
=
4
±
5
\lambda=4\pm\sqrt[]{5}
λ=4±5