线性代数笔记24--对称矩阵、正定型

1. 对称矩阵

A = A ⊤ A=A^{\top} A=A

性质

  • 特征值都是实数
  • 可选择一组正交的特征向量

通常情况下
A = S Λ S − 1 A=S\Lambda S^{-1} A=SΛS1
对称矩阵
A = Q Λ Q − 1 A=Q\Lambda Q^{-1} A=QΛQ1
Q Q Q为标准正交矩阵

为什么特征值为实数

A X = λ X    ⟺    A ‾ X ‾ = λ ‾ X ‾ AX=\lambda X \iff \overline{A}\overline{X}=\overline\lambda\overline X AX=λXAX=λX

如果 A A A为实矩阵
A X = λ X    ⟺    A X ‾ = λ X ‾ AX=\lambda X \iff A\overline{X} =\overline{\lambda X} AX=λXAX=λX
将其转置一下
X ⊤ ‾ A ⊤ = X ⊤ ‾ λ ⊤ ‾ \overline{X^{\top}}A^{\top} =\overline{X^{\top}}\overline{\lambda^{\top}} XA=Xλ
根据对称性
A ⊤ = A A^{\top} = A A=A
得到
X ⊤ ‾ A = X ⊤ ‾ λ ⊤ ‾ \overline{X^{\top}}A =\overline{X^{\top}}\overline{\lambda^{\top}} XA=Xλ
两边同乘 X X X
X ⊤ ‾ A X = X ⊤ ‾ λ ⊤ ‾ X \overline{X^{\top}}AX =\overline{X^{\top}}\overline{\lambda^{\top}}X XAX=XλX
转换一下
X ⊤ ‾ λ X = X ⊤ ‾ λ ⊤ ‾ X \overline{X^{\top}}\lambda X =\overline{X^{\top}}\overline{\lambda^{\top}}X XλX=XλX
又有
X ⊤ ‾ X ≠ 0 \overline{X^{\top} }X \ne 0 XX=0
所以
λ = λ ‾ ⊤ \lambda=\overline\lambda^{\top} λ=λ
所以
λ ∈ R \lambda \in R λR

对于复数来说
X ⊤ ‾ X = [ X 1 ‾ X 2 ‾ ⋯ ] [ X 1 X 2 ⋯ ] = X 1 ‾ X 1 + X 2 ‾ X 2 + ⋯ = ( l e n g t h ) 2 > 0 \overline{X^{\top} }X = \begin{bmatrix} \overline{X1} \overline{X2}\cdots \end{bmatrix} \begin{bmatrix} X1\\ X2\\\cdots \end{bmatrix}= \overline{X1}X1+ \overline{X2}X2+\cdots=(length)^2 \gt 0 XX=[X1X2] X1X2 =X1X1+X2X2+=(length)2>0

好矩阵

  • real λ \lambda λ
  • perp X

A = A ‾ ⊤ A=\overline{A}^{\top} A=A

对于每个对称矩阵
A = A ⊤ A=A^{\top} A=A

可以分解为
A = Q Λ Q ⊤ = [ q 1   q 2 ⋯   ] [ λ 1 λ 2 ⋯ ] [ q 1 ⊤ q 2 ⊤ ⋯ ] = λ 1 q 1 q 1 ⊤ + λ 2 q 2 q 2 ⊤ + ⋯ \begin{align} A &=Q\Lambda Q^{\top} \nonumber &=[q_1\ q_2\cdots] \begin{bmatrix} \lambda_1&&\\ &\lambda_2&\\ & & \cdots& \end{bmatrix} \begin{bmatrix} q_1^{\top}\\q_2^{\top}\\ \cdots \end{bmatrix} \end{align}= \lambda_1q_1q_1^{\top}+\lambda_2q_2q_2^{\top}+\cdots A=QΛQ=[q1 q2] λ1λ2 q1q2 =λ1q1q1+λ2q2q2+
每个对称矩阵都是一组投影矩阵的组合。

主元符号与特征值符号一致。

2. 正定矩阵

正定矩阵是对称矩阵。

  • ∀ λ > 0 \forall \lambda \gt 0 λ>0
  • ∀ p i v o t > 0 \forall pivot \gt 0 pivot>0
  • ∀ k × k 行列式 > 0 \forall k \times k 行列式 \gt0 k×k行列式>0

例子
[ 5 2 2 3 ] \begin{bmatrix} 5 & 2\\2 & 3\\ \end{bmatrix} [5223]
主元 5   11 / 5 5\ 11/5 5 11/5
λ = 4 ± 5 \lambda=4\pm\sqrt[]{5} λ=4±5

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值