4-IEEE trans顶刊复现,水下机器人AUV的路径规划和基于模型预测控制MPC的跟踪框架

4-IEEE trans顶刊复现,水下机器人AUV的路径规划和基于模型预测控制MPC的跟踪框架。
参考文献和建模过程请参考图片中的文章,本代码包括路径规划和MPC路径跟踪两个模块,两个模块均采用优化求解器求解,考虑了AUV的水动力学模型,结果是2D空间内的平面路径。
输出的结果请见下图


标题:水下机器人AUV的路径规划与基于模型预测控制的跟踪框架

摘要:本文旨在通过复现4-IEEE trans顶刊的相关研究,介绍水下机器人AUV的路径规划和基于模型预测控制(MPC)的跟踪框架。本文分为两个主要部分,分别是路径规划和MPC路径跟踪。两个模块都采用优化求解器进行求解,考虑了AUV的水动力学模型,并通过实验在2D空间内得到了平面路径。

1. 引言
水下机器人AUV(Autonomous Underwater Vehicle)作为一种重要的水下探测设备,在海洋工程、海洋科学等领域得到了广泛的应用。而有效的路径规划和控制方式对其性能和应用领域的拓展具有重要意义。本文基于4-IEEE trans顶刊的相关研究,对水下机器人AUV的路径规划和基于模型预测控制的跟踪框架进行了复现和分析。

2. 路径规划
路径规划是指在给定环境中,通过预先计算确定水下机器人AUV的最优路径。在本文中,我们采用了优化求解器来求解路径规划问题。通过考虑AUV的水动力学模型,结合环境约束条件和目标要求,我们得到了能够满足要求的最优路径。具体的路径规划流程如下:
(1)建立水下机器人AUV的水动力学模型,包括力学方程和动力学方程。
(2)确定环境约束条件,包括障碍物、深度限制等。
(3)定义目标要求,包括路径长度、时间限制等。
(4)利用优化求解器对路径规划问题进行求解,得到最优路径。

3. 基于模型预测控制的跟踪框架
基于模型预测控制(MPC)是一种优化控制方法,通过预测系统的未来状态来计算最优的控制策略。在水下机器人AUV的跟踪过程中,MPC能够根据当前状态和目标轨迹预测未来状态,通过调整控制策略来实现精准跟踪。本文基于4-IEEE trans顶刊的研究,提出了一种基于MPC的跟踪框架,并通过实验验证其有效性。具体的跟踪框架如下:
(1)建立水下机器人AUV的动力学模型,包括运动方程和控制方程。
(2)设定目标轨迹,包括位置和姿态信息。
(3)使用模型预测方法预测未来状态,并计算最优的控制策略。
(4)根据控制策略对机器人进行控制,实现目标轨迹的精准跟踪。

4. 实验结果与分析
通过对复现的路径规划和MPC路径跟踪框架进行实验,我们得到了相应的结果。路径规划部分得到了满足约束条件和目标要求的最优路径,该路径在2D空间内可以实现平面路径的规划。MPC路径跟踪部分通过调整控制策略,实现了水下机器人AUV对目标轨迹的精准跟踪。

5. 结论
本文通过复现4-IEEE trans顶刊的相关研究,介绍了水下机器人AUV的路径规划和基于模型预测控制的跟踪框架。通过优化求解器求解路径规划和模型预测控制问题,我们得到了满足要求的最优路径和控制策略。实验结果表明,所提出的路径规划和MPC跟踪框架在实际应用中具有良好的性能和效果。

关键词:水下机器人AUV,路径规划,模型预测控制,优化求解器,水动力学模型,跟踪框架

相关代码,程序地址:http://imgcs.cn/lanzoun/762023893411.html
 

### AUV路径规划MATLAB仿真代码示例 针对AUV路径规划的需求,下面展示一段基于六自由度模型AUV路径规划MATLAB仿真代码。此代码能够模拟AUV按照预定轨迹移动的过程,并评估不同控制策略的效果。 #### 初始化参数设置 ```matlab % 定义物理常量初始条件 g = 9.8; % 重力加速度 (m/s^2)[^1] rho_water = 1025; % 海水密度 (kg/m^3) % 初始状态向量 [位置x y z 姿态角phi theta psi 线速度u v w 角速度p q r]' state_init = [0; 0; -10; 0; 0; 0; 0; 0; 0; 0; 0; 0]; % 时间配置 tspan = linspace(0, 60, 60*10); % 总时间跨度为60秒,每秒采样10次 ``` #### 控制律定义 为了实现精确的路径跟随,采用Lyapunov方法设计控制器[^2]: ```matlab function tau = controller(state_desired,state_actual) Kp = diag([10, 10, 10]); % 比例增益矩阵 Ki = eye(3)*0.1; e_pos = state_desired(1:3)-state_actual(1:3); e_att = wrapToPi(state_desired(4:6)'-state_actual(4:6)'); u = -(Kp*e_pos + Ki*(cumtrapz(t,e_pos))); tau = [u; zeros(3,1)]; % 输出转矩命令 end ``` #### 主函数逻辑结构 构建完整的仿真流程,在循环内更新系统的当前状态并绘制实时动画效果: ```matlab figure('Name','AUV Path Planning Simulation'); hold on; for i=1:length(tspan)-1 dt = tspan(i+1) - tspan(i); % 获取期望姿态与实际姿态之间的偏差 err_pose = getPoseError(desired_path(:,i),current_state); % 计算所需的输入力矩 control_input = controller(err_pose,current_state); % 使用龙格库塔法求解下一时刻的状态 [~,next_state] = ode45(@(t,y) dynamics(y,control_input), ... [tspan(i) tspan(i)+dt], current_state); plot3(current_state(1,:),current_state(2,:),... current_state(3,:),'r.','MarkerSize',10); drawnow limitrate; current_state = next_state(end,:); end ``` 上述代码片段展示了如何利用MATLAB进行基本的AUV路径规划仿真工作。需要注意的是,这只是一个简化版本的例子;真实的工程实践中还需要考虑更多因素如水流干扰、传感器噪声等影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值