快速人脸磨皮/美白算法:BEEPS双边滤波算法的优化加速、嵌入式实现

        最近尝试了一些人脸磨皮美白算法,效果都还不错,但移植到嵌入式太慢了。诸如表面模糊,正常流程的双边滤波算法等等。使用这些算法,处理一张1080P图像,在嵌入式(A53上)上通常需要十秒量级的左右。没办法,做2C行业太卷了,用不了高端SOC,只能找找看看有没有加速方法。最终使用Beeps的迭代算法、定点优化、将算法应用在YUV,最终在单核A53上可达到性能:1080P@1.5s,360P@0.15s左右,基本可满足人脸磨皮、美白的后处理需求,以及实时预览需求。若添加人脸检测模块,只针对人脸ROI进行相关处理,则可进一步压缩耗时,下面记个流水账备忘。

开发记录:

一、beeps算法选择        

        针对当前通用类算法的耗时不理想的问题,结合之前做高斯模糊的经验,在想有没有一种算法向高斯模糊一样,将卷积计算转化为行列上的迭代计算,如此可大幅降低计算量。检索了一下,搜到了Bi-Exponential Edge-Preserving Smoother 这篇文章,实现了期望功能,这个算法相关

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值