ModNet抠图算法及摄像头实时抠图示例

目录

一、视频抠图采用绿幕的原因

1、摄像机成色原因

2、抠图效果原因

3、经济成本

二、抠图背景知识

1、Trimap

2、什么是抠图

3、抠图算法分类

三、Deep Image Matting算法

1、网络结构图

2、算法解读

(1)Encoder-Decoder阶段

(2)Refinement阶段

四、ModNet算法:Trimap-Free Portrait Matting in Real Time

1、网络结构图

2、算法解读

五、ModNet抠图实践


一、视频抠图采用绿幕的原因

1、摄像机成色原因

主流摄像机传感器为RGB三通道,所以为了抠图最精准最好采用三原色中原始颜色。此外,相机的CMOS传感器矩阵多数都是采用拜耳阵列,该阵列中绿色感光点是2个,高于红色和蓝色,所以信息更丰富更容易抠除。

2、抠图效果原因

视频中的人物和皮肤,多数都是绿色的补色,反差大,这样电脑在渲染处理时就更容易区分边缘和纹理毛发,从而减少抠图的工作量。

3、经济成本

绿背景亮度高,拍摄时光可以亮度调小点从而省电。

二、抠图背景知识

人像抠图:算法概述及工程实现(一)-云社区-华为云

1、Trimap

最常用的先验知识,它是一个三元图,每个像素取值为{0, 128, 255}其中之一,分别代表前景、未知与背景。

2、什么是抠图

对于一张图I,我们感兴趣的人像部分称为前景F,其余部分为背景B,则图像I可以视为F与B的加权融合:
I=alphaF+(1−alpha)BalphashapeI一致。

而抠图任务就是找到合适的权重alpha矩阵。

将按照上述公式前景图和背景图融合的过程举例如下:

假如一张图的中间圆圈部分为前景,其余部分为背景。则上述两张图按照公式结合后,中间圆圈都是前景相关的像素,而圆圈之外都是背景相关的像素。Alpha对应的是前景图的概率矩阵。

假如alpha训练完成后,若要完成一张图的抠图,只要alpha*原图 + (1-alpha)*白底图即可。

Alpha是介于[0, 1]之间的连续值,可以理解为像素属于前景的概率,这与人像分割是不同的。在人像分割任务中,alpha只能取0或1,本质上是分类任务,而抠图是回归任务。

抠图任务的ground truth,可以看到值分布在0~1之间。

语义分割的ground truth,可以看到值非0即1。

3、抠图算法分类

目前流行的抠图算法大致可以分为两类。

一种是需要先验信息的Trimap-based的方法,宽泛的先验信息包括Trimap、粗糙mask、无人的背景图像、pose信息等,网络使用先验信息与图片信息共同预测alpha

另一种则是Trimap-free的方法,仅根据图片信息预测alpha,对实际应用更友好,但效果普遍不如Trimap-based的方法。

目前主流是trimap-free算法。

三、Deep Image Matting算法

1、网络结构图

2、算法解读

网络包括Encoder-Decoder阶段和Refinement阶段

(1)Encoder-Decoder阶段

输入为RGB图像的patch和对应trimap的concat,所以包含4通道,经过编码和解码后输出单通道的raw alpha pred。该阶段的loss由两部分组成:

第一部分是预测的alpha和真实的alpha之间的绝对误差,考虑到L1 loss在0处不可微,使用Charbonnier Loss去近似:

第二部分是由预测的alpha、真实的前景和真实的背景组成的RGB图像与真实的RGB图像之间的绝对误差,其作用是对网络施加约束,同样使用Charbonnier Loss去近似:

最终的Loss是两部分的加权求和:

(2)Refinement阶段

它的输入为Encoder-Decoder阶段输出的raw alpha pred与原始RGB图像的concat,同样为4通道,原始RGB能够为refine提供边界细节信息。重点是使用了一个skip connection,将Encoder-Decoder阶段输出的raw alpha pred与Refinement阶段输出的refined alpha pred做一个add操作,然后输出最终的预测结果。其实Refinement阶段就是一个residual block,通过残差学习对边界信息进行建模,与去噪模型对噪声建模如出一辙。

Refinement阶段只有一个loss:refined alpha pred与GT alpha matte计算Charbonnier Loss。

四、ModNet算法:Trimap-Free Portrait Matting in Real Time

1、网络结构图

2、算法解读

网络结构由:语义估计分支、细节预测分支、语义-细节融合分支 组成。

五、ModNet抠图实践

参考文章:

【Matting】MODNet:实时人像抠图模型-onnx python部署_onnx模型下载_嘟嘟太菜了的博客-CSDN博客

原作者的onnix模型链接:https://download.csdn.net/download/qq_40035462/85046509

代码示例:

import cv2
import time
from tqdm import tqdm
import numpy as np
import onnxruntime as rt


class Matting:
    def __init__(self, model_path='onnx_model\modnet.onnx', input_size=(512, 512)):
        self.model_path = model_path
        self.sess = rt.InferenceSession(self.model_path, providers=['CUDAExecutionProvider'])
        # self.sess = rt.InferenceSession(self.model_path)  # 默认使用cpu
        self.input_name = self.sess.get_inputs()[0].name
        self.label_name = self.sess.get_outputs()[0].name
        self.input_size = input_size
        self.txt_font = cv2.FONT_HERSHEY_PLAIN

    def normalize(self, im, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]):
        im = im.astype(np.float32, copy=False) / 255.0
        im -= mean
        im /= std
        return im

    def resize(self, im, target_size=608, interp=cv2.INTER_LINEAR):
        if isinstance(target_size, list) or isinstance(target_size, tuple):
            w = target_size[0]
            h = target_size[1]
        else:
            w = target_size
            h = target_size
        im = cv2.resize(im, (w, h), interpolation=interp)
        return im

    def preprocess(self, image, target_size=(512, 512), interp=cv2.INTER_LINEAR):
        image = self.normalize(image)
        image = self.resize(image, target_size=target_size, interp=interp)
        image = np.transpose(image, [2, 0, 1])
        image = image[None, :, :, :]
        return image

    def predict_frame(self, bgr_image):
        assert len(bgr_image.shape) == 3, "Please input RGB image."
        raw_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)
        h, w, c = raw_image.shape
        image = self.preprocess(raw_image, target_size=self.input_size)

        pred = self.sess.run(
            [self.label_name],
            {self.input_name: image.astype(np.float32)}
        )[0]
        pred = pred[0, 0]
        matte_np = self.resize(pred, target_size=(w, h), interp=cv2.INTER_NEAREST)
        matte_np = np.expand_dims(matte_np, axis=-1)
        return matte_np

    def predict_image(self, source_image_path, save_image_path):
        bgr_image = cv2.imread(source_image_path)
        assert len(bgr_image.shape) == 3, "Please input RGB image."
        matte_np = self.predict_frame(bgr_image)
        matting_frame = matte_np * bgr_image + (1 - matte_np) * np.full(bgr_image.shape, 255.0)
        matting_frame = matting_frame.astype('uint8')
        cv2.imwrite(save_image_path, matting_frame)

    def predict_camera(self):
        cap_video = cv2.VideoCapture(0)
        if not cap_video.isOpened():
            raise IOError("Error opening video stream or file.")
        beg = time.time()
        count = 0
        while cap_video.isOpened():
            ret, raw_frame = cap_video.read()
            if ret:
                count += 1
                matte_np = self.predict_frame(raw_frame)
                matting_frame = matte_np * raw_frame + (1 - matte_np) * np.full(raw_frame.shape, 255.0)
                matting_frame = matting_frame.astype('uint8')

                end = time.time()
                fps = round(count / (end - beg), 2)
                if count >= 50:
                    count = 0
                    beg = end

                cv2.putText(matting_frame, "fps: " + str(fps), (20, 20), self.txt_font, 2, (0, 0, 255), 1)

                cv2.imshow('Matting', matting_frame)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
            else:
                break
        cap_video.release()
        cv2.destroyWindow()

    def check_video(self, src_path, dst_path):
        cap1 = cv2.VideoCapture(src_path)
        fps1 = int(cap1.get(cv2.CAP_PROP_FPS))
        number_frames1 = cap1.get(cv2.CAP_PROP_FRAME_COUNT)
        cap2 = cv2.VideoCapture(dst_path)
        fps2 = int(cap2.get(cv2.CAP_PROP_FPS))
        number_frames2 = cap2.get(cv2.CAP_PROP_FRAME_COUNT)
        assert fps1 == fps2 and number_frames1 == number_frames2, "fps or number of frames not equal."

    def predict_video(self, video_path, save_path, threshold=2e-7):
        # 使用odf策略
        time_beg = time.time()
        pre_t2 = None  # 前2步matte
        pre_t1 = None  # 前1步matte

        cap = cv2.VideoCapture(video_path)
        fps = int(cap.get(cv2.CAP_PROP_FPS))
        size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),
                int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
        number_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)
        print("source video fps: {}, video resolution: {}, video frames: {}".format(fps, size, number_frames))
        videoWriter = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc('I', '4', '2', '0'), fps, size)

        ret, frame = cap.read()
        with tqdm(range(int(number_frames))) as t:
            for c in t:
                matte_np = self.predict_frame(frame)
                if pre_t2 is None:
                    pre_t2 = matte_np
                elif pre_t1 is None:
                    pre_t1 = matte_np
                    # 第一帧写入
                    matting_frame = pre_t2 * frame + (1 - pre_t2) * np.full(frame.shape, 255.0)
                    videoWriter.write(matting_frame.astype('uint8'))
                else:
                    # odf
                    error_interval = np.mean(np.abs(pre_t2 - matte_np))
                    error_neigh = np.mean(np.abs(pre_t1 - pre_t2))
                    if error_interval < threshold < error_neigh:
                        pre_t1 = pre_t2

                    matting_frame = pre_t1 * frame + (1 - pre_t1) * np.full(frame.shape, 255.0)
                    videoWriter.write(matting_frame.astype('uint8'))
                    pre_t2 = pre_t1
                    pre_t1 = matte_np

                ret, frame = cap.read()
            # 最后一帧写入
            matting_frame = pre_t1 * frame + (1 - pre_t1) * np.full(frame.shape, 255.0)
            videoWriter.write(matting_frame.astype('uint8'))
            cap.release()
        print("video matting over, time consume: {}, fps: {}".format(time.time() - time_beg, number_frames / (time.time() - time_beg)))


if __name__ == '__main__':
    model = Matting(model_path='onnx_model\modnet.onnx', input_size=(512, 512))
    model.predict_camera()
    # model.predict_image('images\\1.jpeg', 'output\\1.png')
    # model.predict_image('images\\2.jpeg', 'output\\2.png')
    # model.predict_image('images\\3.jpeg', 'output\\3.png')
    # model.predict_image('images\\4.jpeg', 'output\\4.png')
    # model.predict_video("video\dance.avi", "output\dance_matting.avi")

代码中涉及的modnet.onnx文件见最上面的附件。 

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Modnet是一个基于深度学习的图像修复模型,能够将含有缺陷或破损的图像修复为高质量的图像。它的代码和模型结构可以在GitHub上的Modnet仓库中找到。而ONNX是一种跨平台、高性能的开放式模型交换格式,可以将深度学习模型转换为ONNX格式以实现在多个框架之间的无缝迁移和部署。 在Modnet的GitHub仓库中,可以找到Modnet的代码、训练数据、模型结构等相关内容。该仓库提供了构建和训练Modnet模型所需的所有资源,开发者可以根据自己的需要自行下载和使用。 Modnet模型的训练和测试数据也可以在GitHub仓库中找到,这些数据有助于开发者理解模型的训练环境和进行训练性能的评估。此外,仓库中还提供了详细的使用文档和示例代码,以帮助开发者快速上手和运行Modnet模型。 对于想要将Modnet模型与其他框架集成或部署到不同硬件平台上的开发者,ONNX可以起到很大的帮助。通过将Modnet模型转换为ONNX格式,可以实现与其他深度学习框架如TensorFlow、PyTorch等的无缝集成,并能够在不同硬件平台上进行高效的部署。 总之,Modnet onnx github提供了Modnet模型的代码、模型结构、训练数据和使用文档等资源,以及将Modnet模型转换为ONNX格式的说明,方便开发者使用和部署这一优秀的图像修复模型。 ### 回答2: Modnet是一个基于深度学习的图像修复模型,可以用于去除图像中的噪点、镜头污渍和低质量传输等问题。ONNX是一种开放的神经网络中间表示格式,可以在不同的深度学习框架之间进行模型转换和迁移。GitHub是一个基于Git的代码托管平台,提供了开源软件开发所需的版本控制、协作和问题跟踪功能。 Modnet ONNX GitHub指的是Modnet的ONNX版本在GitHub上的仓库。在该仓库内,用户可以访问Modnet的相关代码、模型和文档,以及与其它开发者进行交流和讨论。 通过访问Modnet ONNX GitHub仓库,用户可以下载Modnet的ONNX模型,这样就可以在不同的深度学习框架中使用该模型进行图像修复任务。同时,用户也可以查看已有的文档和示例代码,了解如何使用和优化Modnet模型。 在GitHub上,用户还可以向Modnet ONNX的仓库提交问题、提出建议和参与讨论。这样的开放性平台可以促进不同开发者之间的合作,导致更好的模型改进和推广。 总之,Modnet ONNX GitHub提供了将Modnet模型与ONNX格式相结合的资源和交流平台,使得用户可以更加方便地使用和改进这个图像修复模型。 ### 回答3: ModNet是一个用于图像背景自动分割的先进模型。它是Open Neural Network Exchange (ONNX) 模型库中的一个开源项目。ONNX是一个开放的开源深度学习模型交换框架,它允许用户在不同的深度学习框架中直接交换和使用训练好的模型。 ModNet模型库通过提供训练好的模型参数和源代码,使用户能够使用图像分割功能,即将图像的前景目标与背景进行分离。由于ModNet是基于ONNX模型库开发的,因此它具有高度的灵活性和可移植性。用户可以将ModNet模型集成到不同的深度学习框架中,如PyTorch、TensorFlow和Caffe等。 在ModNet的GitHub页面上,用户可以找到关于模型的详细文档、安装说明和使用示例。用户可以按照指南了解如何基于ModNet模型进行图像背景分割,并将其应用到自己的项目中。在GitHub上,开发者还可以参与到ModNet的进一步开发和改进中,提供建议、报告问题和贡献代码。 总之,ModNet是一个开源的ONNX模型库,提供了先进的图像背景自动分割模型。用户可以在GitHub上获取到相关的文档和代码,并将其集成到自己的深度学习项目中。通过开源社区的不断贡献,ModNet将不断演进和改进,为用户提供更好的图像分割功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值