微分方程中的自洽系统(Autonomous system)

微分方程中的自洽系统(Autonomous System)

微分方程中,自洽系统(Autonomous System)表示隐含独立变量的常微分方程系统。特别地,当独立变量是时间 t t 时,这时的自洽系统称为不含时系统(TIV, time-invariant systems).

In mathematics, an autonomous system or autonomous differential equation is a system of ordinary differential equations which does not explicitly depend on the independent variable. When the variable is time, they are also called time-invariant systems.
—— wikipedia

对于不含时系统,由于微分方程系统隐含了时间,也就是说可以将 t 替换为 tt0 t − t 0 而不会影响系统的成立,于是可以认为这个系统是和时间无关的(这里的无关指与时间的开始无关)。 一般物理定律可以描述为一个不含时系统,因为大部分物理定律是恒成立,不管现在,过去还是未来都会成立。
进一步,自洽系统与动力系统有着密切的联系。任何自洽系统都可以化为一个动力学系统,而在一个弱假设下,一个动力学系统可以化为一个自洽系统。

Autonomous systems are closely related to dynamical systems. Any autonomous system can be transformed into a dynamical system and, using very weak assumptions, a dynamical system can be transformed into an autonomous system.
—— wikipedia

数学定义

一个自洽的微分方程系统,是有如下形式的微分方程系统:

ddtx(t)=f(x(t)) d d t x ( t ) = f ( x ( t ) )

相对的,非自洽的系统可以写为:
ddtx(t)=f(x(t)t) d d t x ( t ) = f ( x ( t ) , t )

时间无关性

这里的时间无关,指与开始时刻无关,在物理上也就是说物理定律的成立是恒成立的。
比如对于下列自洽方程:

ddtx(t)=f(x(t)) d d t x ( t ) = f ( x ( t ) )

x1(t) x 1 ( t ) 是上式的一个解,那么 x2(t)=x1(tt0) x 2 ( t ) = x 1 ( t − t 0 ) 同样是上式的一个解。

证明 x1(t) x 1 ( t ) 是上式的一个解,那么记 s=tt0 s = t − t 0 有:

ddtx2(t)=ddtx1(tt0)=ddsx1(tt0)=ddsx1(s)=f(x1(s))=f(x2) d d t x 2 ( t ) = d d t x 1 ( t − t 0 ) = d d s x 1 ( t − t 0 ) = d d s x 1 ( s ) = f ( x 1 ( s ) ) = f ( x 2 )

非自治随机微分方程(Non-autonomous Stochastic Differential Equations, NSDEs) 和中立型随机微分方程(Neutral Stochastic Differential Equations, NSDDEs) 是两种不同类型的随机微分方程,它们各自有不同的特点和应用场景。 ### 非自治随机微分方程的特点及应用 - **定义**:NSDEs是指那些其系数显式依赖于时间t的随机微分方程。这意味着即使状态x(t)相同,在不同的时刻t,系统的行为可能会有所不同。 - **形式**:一般形式为$dX_t = f(t,X_t)dt + g(t,X_t)dW_t$,其中$f,g$是可能随时间变化的函数,而$W_t$代表一个Wiener过程或者布朗运动。 - **应用领域**:这类方程常用于模拟随着时间演变但受外部因素影响的过程,例如金融市场的资产价格变动、气候变化模型等。 ### 中立型随机微分方程的特点及应用 - **定义**:NSDDEs不仅取决于当前的状态$x(t)$及其过去的历史$\{x(s): s < t\}$,还直接涉及到未来的变化率预测。因此,这种类型包含了对未来行为的一种预估成分。 - **形式**:通常写作$d[X_t-D(X_{t-\tau})] = a(t,X_t)dt+b(t,X_t)dW_t$,这里引入了一个延迟项$\tau>0$以及一个关于过去的映射$D(\cdot)$来表示对未来的调整。 - **应用领域**:适用于需要考虑历史信息同时还要估计即时反应的情况,比如某些生物种群动态、神经网络中的信号传递等问题。 两者的主要区别在于是否含有对未来趋势的影响机制;此外,由于存在明确的时间依赖性,解决NSDE的问题往往更复杂一些,因为必须考虑到所有时间点上的不确定性。而在处理NSDDE时,则需特别关注如何准确刻画记忆效应所带来的长期关联特性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值