采用大模型技术进行知识图谱实体对齐的技术和开源项目主要包括以下几种:
-
LLM-Align
LLM-Align 是一种基于大型语言模型(LLM)的实体对齐方法,利用 LLM 的指令遵循和零-shot 能力进行实体对齐推断,并通过多轮投票机制提高对齐质量。该方法在深层语义理解方面表现出色,推动了知识融合和集成的发展。 -
AutoAlign
AutoAlign 是由清华大学、墨尔本大学和中国香港中文大学的研究团队开发的一种全自动知识图谱对齐方法。它通过谓词嵌入模块、属性嵌入模块和结构嵌入模块三个嵌入模块实现对齐,摒弃了人工标注的需求。实验表明,AutoAlign 在缺乏人工标注的情况下显著提升了对齐性能。 -
ChatEA
ChatEA 是一种结合大模型改进实体对齐的方法,利用大模型的背景知识和推理能力增强基于知识表示的实体对齐。该方法克服了传统实体对齐方法在输入 KG 数据限制和推理透明度方面的不足。 -
CG-MuAlign
CG-MuAlign 是一种基于图神经网络(GNN)的多类型实体对齐方法,利用邻域信息泛化到未标记的类型。该方法在处理多语言实体对齐问题时表现优异,能够有效应对噪声标记数据。 -
开源项目
- AutoKG:一个高效的自动化知识图谱生成框架,支持从文本中提取实体并生成知识图