
论文研读
文章平均质量分 93
Philo`
一个人至少拥有一个梦想,有一个理由去坚强。心若没有栖息的地方,到哪里都是在流浪。
展开
-
C-Net:用于乳腺超声图像分割的具有全局指导和细化残差的级联卷积神经网络
乳腺病灶分割是计算机辅助诊断系统的重要一步。然而,散斑噪声、异质结构和相似的强度分布给乳腺病灶分割带来了挑战。在本文中,我们提出了一种集成 U-net、双向注意引导网络(BAGNet)和细化残差网络(RFNet)的新型级联卷积神经网络,用于乳腺超声图像中的病变分割。具体来说,我们首先使用 U-net 生成一组包含低级和高级图像结构的显着图。然后,使用双向注意力引导网络从显着性图中捕获全局(低级)和局部(高级)特征之间的上下文。全局特征图的引入可以减少周围组织对病变区域的干扰。原创 2023-10-17 17:13:45 · 2445 阅读 · 2 评论 -
GG-Net: 超声图像中乳腺病变分割的全局指导网络
超声波自动乳腺病灶分割有助于诊断乳腺癌,这是影响全球女性的可怕疾病之一。由于固有的散斑伪影、模糊的乳腺病变边界以及乳腺病变区域内的不均匀强度分布,从超声图像中准确分割乳腺区域是一项具有挑战性的任务。最近,卷积神经网络(CNN)在医学图像分割任务中表现出了显着的效果。然而,CNN 中的卷积运算通常集中于局部区域,其捕获输入超声图像的远程依赖性的能力有限,导致乳腺病变分割精度下降。在本文中,我们开发了一种配备全局引导块(GGB)和乳腺病灶边界检测(BD)模块的深度卷积神经网络,用于增强乳腺超声病灶分割。原创 2023-10-09 21:15:26 · 13465 阅读 · 7 评论 -
AAU-net: 用于超声图像中乳腺病变分割的自适应注意力U-Net
TMI2023年较新的一篇写乳腺分割的文章,文章创新点易懂,重点是实验部分做的很充分。原创 2023-10-07 14:33:37 · 3749 阅读 · 6 评论 -
CSwin-PNet: CNN-Swin-Vit 组合金字塔网络用于超声图像中乳腺病变分割
目前,基于乳腺超声(BUS)图像的乳腺肿瘤自动分割仍然是一项具有挑战性的任务。**大多数病变分割方法是基于卷积神经网络(CNN)实现的,其在建立长程依赖关系和获取全局上下文信息方面存在局限性。**最近,基于Transformer的模型由于其强大的自注意力机制而被广泛应用于计算机视觉任务中来构建远程上下文信息,并且其效果比传统的CNN更好。在本文中,CNN 和 Swin Transformer 连接作为特征提取主干,构建用于特征编码和解码的金字塔结构网络。首先,我们设计了一个交互式通道注意(ICA)模块。原创 2023-09-11 17:16:08 · 2075 阅读 · 6 评论 -
SegNetr: 重新思考 U 形网络中的局部-全局交互和跳过连接
近年来,U 形网络因其简单且易于调整的结构而在医学图像分割领域占据主导地位。然而,现有的U型分割网络:1)大多侧重于设计复杂的自注意力模块来弥补基于卷积运算的长期依赖性的不足,这增加了网络的总体参数数量和计算复杂度;2)简单地融合编码器和解码器的特征,忽略它们空间位置之间的联系。在本文中,我们重新思考上述问题并构建了一个轻量级的医学图像分割网络,称为SegNetr。具体来说,我们引入了一种新颖的 SegNetr 模块,它可以在任何阶段动态地执行局部-全局交互,并且仅具有线性复杂度。原创 2023-09-08 15:51:11 · 1201 阅读 · 3 评论 -
UNext:基于 MLP 的快速医学图像分割网络
有代码,可深入学习轻量级分割模型的论文切入点UNet 及其最新扩展(如 TransUNet)近年来一直是领先的医学图像分割方法。然而,这些网络无法有效地用于应用中的快速图像分割,因为它们参数繁重、计算复杂且使用缓慢。为此,我们提出了 UNeXt,它是一种基于卷积多层感知器(MLP)的图像分割网络。我们以有效的方式设计了 UNeXt,其中包括早期卷积阶段和潜在阶段的 MLP 阶段。我们提出了一个标记化的 MLP 块,我们可以在其中有效地标记和投影卷积特征,并使用 MLP 来对表示进行建模。原创 2023-09-07 19:30:00 · 3637 阅读 · 2 评论 -
ATTransUNet:一种增强型混合Transformer结构用于超声图像分割
主要介绍该期刊的基本情况,阅读学习一下该篇文章医学图像的准确自动分割是临床诊断和分析的关键步骤。本文提出了一种增强型Transformer混合分割网络(ATTransUNet)来探索医学图像中高效的token挖掘方法,并结合自注意力机制进行医学图像分割,以达到性能和效率之间的平衡。此外,为了进一步提高分割精度并融合CNN和Transformer各自的优点,本文设计了选择性特征强化模块(SFRM)。本文提出的模型能够准确定位待分割的结构,显着提高了多个数据集上医学图像分割的准确性。原创 2023-09-07 09:29:09 · 679 阅读 · 0 评论 -
ExSwin-Unet 论文研读
准确的胎儿大脑MRI图像分割对于胎儿疾病的诊断和治疗至关重要。患者大脑结构的形状和大小存在差异,先天性疾病引起的细微变化,脑的复杂解剖结构。我们提出了一种配备了新的 ExSwin 转换器块的新型不平衡加权 Unet,通过有效地捕获不同样本之间的远程依赖性和相关性来全面解决上述问题。我们设计了一个更深层次的编码器来促进特征提取和保留更多语义细节。此外,采用自适应权重调整方法动态调整不同类的损失权重,以优化学习方向并从欠学习类中提取更多特征。在FeTA 数据集。原创 2023-03-02 10:17:03 · 3850 阅读 · 4 评论 -
DC-UNet: Rethinking the U-Net Architecture with Dual Channel Efficient CNN for Medical Images Segmen
【代码】DC-UNet: Rethinking the U-Net Architecture with Dual Channel Efficient CNN for Medical Images Segmen。原创 2022-12-10 18:07:26 · 954 阅读 · 0 评论 -
Affinity Feature Strengthening for Accurate, Complete and Robust Vessel Segmentation
126张,84 training 42 test。40张 20training 20 test。并以 90°、180° 和 270° 随机旋转。32张 24training 8test。随机亮度和对比度范围从 1.0 到 2.1。然后裁剪为 256×256 像素进行训练。随机饱和度范围从 0.5 到 1.5。原创 2022-12-10 18:05:30 · 820 阅读 · 0 评论 -
最新出炉的U-Net研究性综述:Medical Image Segmentation Review: The Success of U-Net
论文地址:https://arxiv.org/abs/2211.14830代码地址:https://github.com/NITR098/Awesome-U-Net文章第一部分是介绍了医学图像分割的重要性,第二部分是分别介绍了2D-UNet和3D-UNet的发展史和意义;文章重点在第三部分和第四部分,第三部介绍了U-Net的六个部分的改进,第四部分是介绍了主要模型的全部实施过程,第五部分,介绍了医学图像分割的未来发展方向和困难点。文章主要从六个部分介绍了截至2022年9月,高引用文章的模型改进方法,分为:原创 2022-12-06 21:34:17 · 6592 阅读 · 6 评论 -
U-Net 模型改进和应用场景研究性综述
参考之前的一篇文章:U-Net代码练习结构性改进就三种情况,编码器解码器改进,跳连接改进,以及模型整体结构改进;大 部 分 改 进 工 作是在原有模块的基础上,增加残差模块、Dense 模 块 、Inception 模 块 、Attention 模 块 等 经 典 网 络 模 块 , 或 综 合 运 用 其 中 的 几 种 模 块 ,以 提 高 网 络 的 分 割 性 能。2018年的一篇MDU-Net: Multi-scale Densely Connected U-Net for biomedical原创 2022-12-05 17:29:57 · 13123 阅读 · 0 评论 -
深度学习在医学图像分割上的技巧、挑战、未来方向——论文研读
探索和开发在MedISeg上更多的Tricks;继续探索Tricks在更多的模型和数据集上的效果;探索以技巧为灵感的模型设计;探索基于注意力机制的Tricks;原创 2022-11-20 15:59:12 · 3020 阅读 · 1 评论 -
IterNet——迭代式U-Net变形
输入包括三个部分,一个是BaseUNet倒数第二层的输出,一个是BaseUNet第二层的输出,最后一个就是前一层的Mini-UNet倒数第二层的输出,将三个输入使用cat进行通道链接,同时使用1*1卷进进行通道降维。输入包括两个部分,一个是BaseUNet倒数第二层的输出,一个是BaseUNet第二层的输出。后期真正开始进行实验的时候,可以作为一个Baseline,等用到了再复现吧!和原始UNet的结构是一样的,保留着其本身强劲的分割能力。说和没说一样的,后期复现代码的时候回来填坑。原创 2022-10-24 13:16:25 · 1673 阅读 · 0 评论 -
Local Intensity Order Transformation for Robust Curvilinear Object Segmentation(LIOT)
Artical DOI: 10.1109/TIP.2022.3155954Artical Code: githubCross-datasets includes DRIVE, STARE, CHASEDB1 and CrackTree:DRIVE: 40 565584 color retinal images,which split into 20 traing images and 20 test test imagesSTARE: consists of 20 700605 color retin原创 2022-10-20 10:16:34 · 408 阅读 · 0 评论