[掌握Log10:提升LangChain的调试和管理能力]

# 掌握Log10:提升LangChain的调试和管理能力

## 引言
在现代应用开发中,管理和调试复杂的LLM(大型语言模型)非常关键。Log10是一个开源的平台,专为LangChain提供无代理的数据管理和应用开发支持。本篇文章将介绍如何在LangChain中集成Log10,以实现强大的日志记录、调试和标签管理。

## 主要内容

### 什么是Log10?
Log10是一个开源平台,能够让开发者轻松地记录、调试和管理LangChain调用。它通过提供无代理环境,简化了LLM应用程序的开发和维护。

### 快速开始
1. 在[log10.io](https://log10.io)创建一个免费账户。
2. 在账户设置中获取`LOG10_TOKEN`和`LOG10_ORG_ID`,并将它们作为环境变量添加。
3. 添加`LOG10_URL=https://log10.io`以及您的LLM API密钥(例如`OPENAI_API_KEY`或`ANTHROPIC_API_KEY`)到环境中。

### 如何为LangChain启用Log10数据管理
使用Log10进行集成非常简单,只需一行代码就可以实现`log10_callback`集成,如下所示:

```python
from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage
from log10.langchain import Log10Callback
from log10.llm import Log10Config

# 使用API代理服务提高访问稳定性
log10_callback = Log10Callback(log10_config=Log10Config())

messages = [
    HumanMessage(content="You are a ping pong machine"),
    HumanMessage(content="Ping?"),
]

llm = ChatOpenAI(model="gpt-3.5-turbo", callbacks=[log10_callback])

使用Log10的标签功能

Log10允许你在调用中添加标签,以便更好地组织和管理调用数据:

from langchain_openai import ChatOpenAI
from langchain_core.messages import HumanMessage
from log10.langchain import Log10Callback
from log10.llm import Log10Config

log10_callback = Log10Callback(log10_config=Log10Config())

messages = [
    HumanMessage(content="You are a ping pong machine"),
    HumanMessage(content="Ping?"),
]

llm = ChatOpenAI(model="gpt-3.5-turbo", callbacks=[log10_callback], temperature=0.5, tags=["test"])
completion = llm.predict_messages(messages, tags=["foobar"])
print(completion)

结合OpenAI和LangChain调用

你也可以将直接的OpenAI调用与LangChain的LLM调用结合使用:

import os
from log10.load import log10, log10_session
import openai
from langchain_openai import OpenAI

log10(openai)

with log10_session(tags=["foo", "bar"]):
    response = openai.Completion.create(
        model="text-ada-001",
        prompt="Where is the Eiffel Tower?",
        temperature=0,
        max_tokens=1024,
        top_p=1,
        frequency_penalty=0,
        presence_penalty=0,
    )
    print(response)

    llm = OpenAI(model_name="text-ada-001", temperature=0.5)
    response = llm.predict("You are a ping pong machine.\nPing?\n")
    print(response)

常见问题和解决方案

如何解决网络限制问题?

由于某些地区的网络限制,开发者可能需要考虑使用API代理服务来提高访问稳定性。

如何调试LangChain调用?

Log10提供了详细的调试日志,通过集成后的日志记录功能,你可以轻松追踪和分析LangChain调用。

总结和进一步学习资源

Log10为LangChain的开发提供了强大而简便的调试和管理功能。通过本文介绍的方法,你可以轻松开始使用Log10来增强你的应用开发流程。

进一步学习资源

参考资料

  • Log10 + LangChain集成文档
  • OpenAI API使用手册
  • LangChain基础教程

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值