探索 Zep Cloud:利用长记忆存储增强 AI 聊天助手
引言
在构建更强大和个性化的 AI 聊天助手时,记忆功能是至关重要的。Zep Cloud 提供了一种长记忆服务,使我们能够在聊天助手中实现历史对话的回忆和上下文理解。本文将探讨如何使用 Zep Cloud 的 API 来存储和检索聊天记录,并利用向量搜索和最大边际相关性(MMR)重排序提高检索效果。
主要内容
添加对话历史到 Zep 记忆存储
在使用 Zep 进行存储时,首先需要将对话历史上传到其长记忆存储中。通过此存储,AI 助手能够回忆过去的对话内容,从而减少幻想、延迟和成本。以下是如何初始化和添加对话历史的示例代码:
import getpass
from uuid import uuid4
from langchain_community.memory.zep_cloud_memory import ZepCloudMemory
from langchain_core.messages import AIMessage, HumanMessage
# 输入你的 Zep API 密钥
zep_api_key = getpass.getpass()
# 为当前会话生成唯一识别符
session_id = str(uuid4())
# 初始化 Zep Memory 类
zep_memory = ZepCloudMemory(session_id=session_id, api_key=zep_api_key)
# 预加载一些对话历史
test_history = [
{
"role": "human", "content": "Who was Octavia Butler?"