Probabilistic PCA

前言

一直觉得PCA还是比较简单容易理解的,但是到了Probabilistic PCA(PPCA)就开始觉得复杂起来。PCA出来已经有100年时间,而PPCA到了1999年才出来。这段时间看了这方面的资料,以下将自己的理解记录一下

介绍

假设有数据 X , X ∈ R m × n \LARGE X,X\in \mathbb{R}^{m\times n} X,XRm×n,且各列已经以0作为均值中心化,且相互独立。第i行表示为第i个观察样本 x i \LARGE x_i xi,不是变量。未加说明,所有向量为列向量
X = [ x 1 , ⋯   , x m ] T \LARGE X = [x_1,\cdots,x_m]^T X=[x1,,xm]T
一个潜在变量模型可以表述为下述形式:
x = W z + μ + ϵ \LARGE x = Wz+\mu+\epsilon x=Wz+μ+ϵ
z是潜在变量,W属于潜在因子,和权值矩阵不一样。由于X已经中心化,这里的均值 μ \mu μ可以忽略。给定不同的 ϵ \epsilon ϵ,这个模型可以衍生出PCA,PPCA,Factor Analysis(FA)。

PCA

最熟悉的PCA目标是如下的形式
a r g   m a x w   ∣ ∣ X w ∣ ∣ 2 2 \LARGE arg \ \underset{w}{max} \ ||Xw||_2^2 arg wmax Xw22
这个假定有一些粗暴的认定方差最大的方向w,代表了数据X中的大多数信息,在计算上,跟概率没有什么直接的联系。
在这里插入图片描述
ϵ → 0 \epsilon \rightarrow 0 ϵ0
⇒ x = W z X = [ x 1 , ⋯   , x m ] T = [ W z 1 , ⋯   , W z m ] T = [ z 1 , ⋯   , z m ] T W T = Z W T a r g m a x W   ∑ i = 1 m ∣ ∣ z i − μ z ∣ ∣ 2 2 = ∑ i = 1 m ∣ ∣ W T x i ∣ ∣ 2 2 = t r ( W T X T X W ) \Rightarrow x = Wz\\ X = [x_1,\cdots,x_m]^T=[Wz_1,\cdots,Wz_m]^T=[z_1,\cdots,z_m]^TW^T=Z W^T\\ \underset{W}{argmax} \ \sum_{i=1}^{m}||z_i-\mu_z||_2^2=\sum_{i=1}^{m}||W^Tx_i||_2^2 =tr(W^TX^TXW) x=WzX=[x1,,xm]T=[Wz1,,Wzm]T=[z1,,zm]TWT=ZWTWargmax i=1mziμz22=i=1mWTxi22=tr(WTXTXW)

PPCA

x ∼ N ( W z , σ 2 I ) , z ∼ N ( 0 , I ) x \sim N(Wz,\sigma^2I),z \sim N(0,I) xN(Wz,σ2I),zN(0,I)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
PPCA允许数据中带有的白噪声,一定程度上,能更好的反应真实的数据。但在实际应用中,PPCA似乎并没有比PCA好多少。

Factor Analysis

x ∼ N ( W z , D ) , z ∼ N ( 0 , I ) x \sim N(Wz,D),z \sim N(0,I) xN(Wz,D),zN(0,I) D是对角阵。FA是没有解析解的,它的因子解析也很随意,带有很大的主观性。

总结

PCA是PPCA的特殊形式,而PPCA又是FA的特殊形式

参考文献

  1. Michael E. Tipping, Christopher M. Bishop. Probabilistic Principal Component Analysis[J]. Journal of the Royal Statistical Society, 1999, 61(3):611-622.
  2. https://www.cs.ubc.ca/~schmidtm/Courses/540-W16/L12.pdf
    这个课程感觉相当棒,推荐一下
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值