从零玩转CanMV-K230(1)-简介

本文介绍了嘉楠科技的K230芯片,一款基于RISC-V的高性能AIoT芯片,强调其高精度、低功耗和多模态特性,以及与前代K210的升级。同时提到了与之配套的维脑科技开发板及其在智能驾驶等领域的应用潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言


前一些列文章我们介绍了K210的使用方法,近期嘉楠科技发布了最新一版的K230芯片,下面我们来了解下这款芯片,后续我们将介绍该款芯片开发板的使用方法。

一、嘉楠的产品体系

嘉楠科技在2018年推出了K210芯片。K210是一款基于RISC-V处理器架构的AI芯片,具有强大的机器视觉和机器听觉能力,可广泛应用于智能家居、智能园区、智能能耗和智能农业等领域。K210的功耗极低,仅为0.3W,典型设备功耗为1W,算力达到1TOPS,满足了边缘侧场景的需求。此外,K210的核心神经网络加速器KPU是嘉楠科技自主研发的,能够处理复杂的人脸检测与识别、图像识别与分类等机器视觉任务。

嘉楠科技在2021年推出了K510芯片。作为全球首款基于Linux的RISC-V内核高精度AI芯片,K510采用了2.5TFLOPS BF16的算力,功耗为2W。K510的推出进一步提升了嘉楠科技在AI芯片领域的竞争力,为客户提供了更多样化、高性能的芯片选择。

嘉楠科技在2023年推出了K230芯片,最新的K230芯片则是在K210的基础上进行了显著的提升。K230是一款基于RISC-V架构的端侧AIoT芯片,具有高精度、低延迟、高性能、超低功耗和快速启动等特点。它适用于各类智能产品场景,如边缘侧大模型多模态接入终端、3D结构光深度感知模组、交互型机器人等。K230的KPU是嘉楠科技自研的第三代AI KPU引擎,性能和算力利用率都有显著提升。此外,K230还配备了双核RISC-V CPU和高性能AI引擎,支持INT8和INT16,典型网络下实测推理能力可达K210的13.7倍。
在这里插入图片描述

二、开发板介绍

本项目使用的开发板是维脑科技生产的K230开发板,外观和接口完全兼容官方测试版CanMV-K230,价格上有一定优势。可以在pdd,淘宝等平台搜索维脑科技,K230进行购买。
CanMV-K230 嵌入式 AI 开发板搭载嘉楠科技 Kendryte 系列最新一代高性能边缘AIoT SoC K230,它集成双核玄铁C908 RISC-VCPU,内置自研第三代 KPU 智能计算单元,具备多精度 AI 算力,广泛支持通用的AI计算框架,部分典型网络利用率超过了70%。开发板附带有丰富的软硬件开发资料及相应工具软件,是专业人士搭建产品原型设计和进行性能评估的理想选择。
在这里插入图片描述
开发板功能模块如下,支持高性能AI加速单元(KPU),双核C908高性能RISC-V CPU,三路4K高清摄像头输入,高清显示输出接口,丰富的外设接口
在这里插入图片描述
开发板参数表如下
在这里插入图片描述

三、应用领域

该芯片可以应用于,智能辅助驾驶,智能摄像头,门锁,无人机等领域,可胜任支持视觉、语音、翻译等方面的任务
在这里插入图片描述
目录
从零玩转CanMV-K230(1)-简介
从零玩转CanMV-K230(2)-开发环境搭建
从零玩转CanMV-K230(3)-Hello World
更新中…


总结

K230芯片是首款采用RISC-V Vector 1.0标准的商用量产芯片,芯片中的KPU是嘉楠科技自研的第三代AI KPU引擎,具有更高的性能、更高的算力利用率(部分典型网络的利用率超过了70%)以及AI多模态和AI工具视力完备和多样。
后续章节将介绍CanMV-K230开发板的入门使用。

### K230 开发板上部署 YOLOv11 模型教程 #### 准备工作 为了成功在K230开发板上部署YOLOv11模型,需确认电安装的NNCase版本与K230开发板上的镜像版本相匹配[^2]。这一步骤至关重要,因为不同版本间的兼容性差异可能导致后续部署失败。 #### 下载并配置环境 前往嘉楠社区提供的链接下载适用于当前系统的NNCase工具链版本,并按照官方文档完成安装设置。确保所有依赖项均已正确安装,以便顺利执行下一步操作。 #### 转换模型文件格式 对于YOLOv11训练得到的`.pt`模型文件,在将其移植到目标硬件平台之前,需要先利用NNCase将此PyTorch格式转换为目标设备所支持的形式。具体命令如下所示: ```bash ncc compile yolov11.pt yolov11.kmodel -i pytorch --dataset ./calibration_dataset/ ``` 上述指令会读取指定路径下的校准数据集来优化量化精度,最终输出适配于K230架构运行的`.kmodel`文件[^1]。 #### 部署至开发板 上传编译好的`.kmodel`文件到K230开发板中对应的目录下;编写简单的测试程序加载该模型并对输入图像进行推理预测。下面是一个Python脚本的例子用于调用已部署的YOLOv11模型: ```python from kpu import model as M import sensor, image sensor.reset() sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QVGA) net = M.load("/sd/yolov11.kmodel") while True: img = sensor.snapshot() out = net.forward(img) ... ``` 这段代码初始化摄像头模块获取实时视频流作为输入源,接着创建了一个基于先前传输上去的`.kmodel`实例化对象来进行前向传播计算得出检测框位置信息等结果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

叶与花语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值