地理空间数学基础

地球表面几何模型:
1、第一类
地球的自然表面,起伏不平、不规则,难以用一个简洁的数学模型表达。

2、第二类
相对抽象的面–大地水准面。假设当海水处于完全静止的平衡状态时,从海平面延伸到所有大陆下部,而与地球中立方向处处正交的一个连续、闭合的水准面,这就是大地水准面。

水准面是一个重力等位面。

对于地球连续空间而言,存在无数个水准面,大地水准面是其中一个特殊的重力等位面,它在理论上与静止海平面重合。

大地体:大地水准面包围的形体

由于地质条件等因素的影响,大地水准面存在局部的不规则起伏,并不是一个严格的数学曲面,在测量和GIS应用中仍存在极大的困难。

3、第三类
地球椭球体(参考椭球体)。它是一个旋转椭球体,可以使用精确的数学表达,所以在测量和GIS应用中一般选择一个旋转椭球体作为地球理想的模型,并称为地球椭球

地球椭球并不是一个任意的旋转椭球体。只有与水准面一致起来的旋转椭球体才能用作地球椭球。地球椭球的确定很复杂。

由于不同的测量条件,不同的研究方法,得到的地球椭球不尽相同。下面是几种常见的地球椭球:

WGS-84
1975年国际椭球(中国1980西安坐标系采用)
海福特(中国1953以前采用)
克拉索夫斯基(中国1954年北京坐标系采用)

有了参考椭球体,在实际建立地理空间坐标系统的时候,需要指定一个大地基准面将这个椭球体与大地体联系起来,在大地测量学中称之为椭球定位。

所谓的定位,就是依据一定的条件,将具有给定参数的椭球与大地体的相关位置确定下来。这里所指的一定条件可以理解为两方面:
1>依据什么要求使大地水准面与椭球体符合
2>对椭球体轴向的规定

参考椭球体的短轴与地球旋转轴平行是参考椭球体定位的最基本要求。

强调局部地区大地水准面与椭球面较好的定位,称为参考定位。如我国1980西安坐标系。

强调全球大地水准面与椭球面符合较好的定位,称为绝对定位。如WGS-84坐标系。

4、第四类
数学模型,在解决其他一些大地测量学问题时提出来的,如类地形面、准大地水准面、静态水平衡椭球体等。

坐标系统

地理空间坐标系统提供了确定空间位置的参考标准。分为:球面坐标系统和平面坐标系统(投影坐标系统)。

对于球面坐标系统,主要包括一个地球椭球和一个大地基准面。大地基准面规定了地球椭球与大地体的位置关系。

平面坐标系统,除了包含与之对应的球面坐标系统的基本参数以外,还必须指定一个投影规则,即球面坐标与平面坐标之间的映射关系。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值