目录
src/model/model_manager.cj文件修改
引言
当创意遇上代码,AI文生图技术正在重塑视觉创作边界!质谱AI的CogView模型以其对文本描述的精准理解和多样化风格表达能力,为开发者提供了强大的图像生成工具。本文将深入解析如何通过质谱AI文生图API实现创意可视化,并重点解决开发者在华为Cangjie Magic框架中集成该API时遇到的关键兼容性问题——从接口参数详解到框架源码改造,手把手带您打通技术集成全链路。
质谱AI文生图API
质谱AI的CogView模型适用于图像生成任务,通过对用户文字描述快速、精准的理解,让AI的图像表达更加精确和个性化,其API接口参见智谱AI开放平台。
接口请求
传输方式 | HTTPS |
---|---|
请求地址 | https://open.bigmodel.cn/api/paas/v4/images/generations |
调用方式 | 同步调用,等待模型执行完成并返回最终结果 |
字符编码 | UTF-8 |
接口请求格式 | JSON |
响应格式 | JSON |
接口请求类型 | POST |
开发语言 | 任意可发起 http 请求的开发语言 |
请求参数
参数名 | 类型 | 必填 | 描述 |
---|---|---|---|
model | String | 是 | 模型编码,目前支持:cogview-4-250304、cogview-4、cogview-3-flash |
prompt | String | 是 | 所需图像的文本描述 |
quality | String | 否 | 生成图像的质量,默认为 standard hd : 生成更精细、细节更丰富的图像,整体一致性更高,耗时约20 秒 standard :快速生成图像,适合对生成速度有较高要求的场景,耗时约 5-10 秒 此参数仅支持 cogview-4-250304 。 |
size | String | 否 | 图片尺寸,推荐枚举值:1024x1024,768x1344,864x1152,1344x768,1152x864,1440x720,720x1440,默认是1024x1024。 自定义参数:长宽均需满足 512px - 2048px 之间,需被16整除, 并保证最大像素数不超过 2^21 px。 |
user_id | String | 否 | 终端用户的唯一ID,协助平台对终端用户的违规行为、生成违法及不良信息或其他滥用行为进行干预。ID长度要求:最少6个字符,最多128个字符。 |
响应参数
参数名称 | 类型 | 参数说明 |
---|---|---|
created | String | 请求创建时间,是以秒为单位的Unix时间戳。 |
data | List | 数组,包含生成的图片 URL。目前数组中只包含一张图片。 |
url | String | 图片链接。图片的临时链接有效期为 30天,请及时转存图片。 |
content_filter | List | 返回内容安全的相关信息。 |
role | String | 安全生效环节,包括 role = assistant 模型推理,role = user 用户输入,role = history 历史上下文 |
level | Integer | 严重程度 level 0-3,level 0表示最严重,3表示轻微 |
Cangjie Magic相关代码的修改
质谱AI的接口和OpenAI差不多,但是如果直接在Cangjie Magic中用OpenAi接口调用,会产生如下错误:
An exception has occurred:
Exception: Convert to String error. Value: 1749968827
at magic.jsonable.JsonableException::init(std.core::String)(/home/developer/.cjpm/git/magic/ca8cba8d704c88285e5a53cffdd8f03092a06e37/src/jsonable/jsonable.cj:38)
at magic.jsonable.lambda.33()(/home/developer/.cjpm/git/magic/ca8cba8d704c88285e5a53cffdd8f03092a06e37/src/jsonable/jsonable.cj:49)
at magic.jsonable.String::fromJsonValue(encoding.json::JsonValue)(/home/developer/.cjpm/git/magic/ca8cba8d704c88285e5a53cffdd8f03092a06e37/src/jsonable/jsonable.cj:48)
at magic.model.openai.OpenAIImageResponse::fromJsonValue(encoding.json::JsonValue)(/home/developer/.cjpm/git/magic/ca8cba8d704c88285e5a53cffdd8f03092a06e37/src/model/openai/image.cj:18)
at magic.model.openai.OpenAIImageModel::create(magic.core.model::ImageRequest)(/home/developer/.cjpm/git/magic/ca8cba8d704c88285e5a53cffdd8f03092a06e37/src/model/openai/image.cj:64)
at genimg.main()(/home/developer/IDEProjects/genimg/src/main.cj:54)
产生这个错误的原因是质谱AI返回的数据中的created格式和OpenAI的略有不同,所以Cangjie Magic在处理Json数据时发生了错误。为此需要单独写个质谱AI的接口。
src/model/model_manager.cj文件修改
先增加:
import magic.model.zhipuai.ZhipuAIImageModel
修改createImageModel函数:
public static func createImageModel(modelConfig: ModelConfig): ImageModel {
match (modelConfig.service) {
case "openai" =>
return OpenAIImageModel(modelConfig.name, apiKey: modelConfig.apiKey, baseURL: modelConfig.baseURL)
case "siliconflow" =>
return SiliconflowImageModel(modelConfig.name, apiKey: modelConfig.apiKey, baseURL: modelConfig.baseURL)
case "zhipuai" =>
return ZhipuAIImageModel(modelConfig.name, apiKey: modelConfig.apiKey, baseURL: modelConfig.baseURL)
case _ =>
throw UnsupportedException("Unreachable")
}
}
增加ZhipuAIImageModel
创建src/model/zhipuai/image.cj文件如下:
/*
* Copyright (c) Huawei Technologies Co., Ltd. 2024-2025. All rights reserved.
*/
package magic.model.zhipuai
import magic.core.model.*
import magic.utils.http.*
import magic.dsl.jsonable
import magic.jsonable.*
import encoding.json.*
import std.collection.{HashMap, ArrayList}
@jsonable
private class ZhipuAIImageResponse {
let created: Int64
let data: Array<ZhipuAIImageData>
}
@jsonable
private class ZhipuAIImageData {
let url: String
}
public class ZhipuAIImageModel <: ImageModel {
private let model: String
private let baseURL: String
public let apiKey: String
public init(
model: String,
apiKey!: String,
baseURL!: String
) {
this.model = model
this.apiKey = apiKey
this.baseURL = baseURL
}
override public prop service: String {
get() { "zhipuai" }
}
override public prop name: String {
get() { model }
}
override public func create(imageReq: ImageRequest): ImageResponse {
let req = JsonObject()
req.put("model", JsonString(model))
req.put("prompt", JsonString(imageReq.prompt))
req.put("quality", JsonString("standard"))
req.put("size", JsonString(imageReq.size))
let header = HashMap<String, String>([
("Content-Type", "application/json"),
("Authorization", "Bearer ${this.apiKey}")
])
match (HttpUtils.post("${this.baseURL}/images/generations", header, req, verify: false)) {
case Some(body) =>
let resp = ZhipuAIImageResponse.fromJsonValue(JsonValue.fromStr(body))
let image = resp.data[0] // Currently, we just return the first image
return ImageResponse(
url: image.url
)
case None => throw ModelException("Fail to get image http response")
}
}
}
程序测试
测试程序编写如下:
package zhipuimg
import magic.dsl.tool
import magic.jsonable.*
import magic.tool.NativeFuncTool
import magic.core.model.ImageRequest
import magic.model.ModelManager
import magic.config.Config
main(): Int64 {
let model = ModelManager.createImageModel("zhipuai:cogview-3-flash")
let resp = model.create(
ImageRequest(
"夏天,沙滩,比基尼,躺椅",
size: "1024x1024"
)
)
println("图像已经生成, URL:${resp.url}")
return 0
}
这个程序和前面测试硅基流动的代码相同(使用华为CangjieMagic智能体框架实现文生图-CSDN博客) 。
测试结果如下:
developer@developer:~/IDEProjects/zhipuimg$ cjpm run --name zhipuimg
图像已经生成, URL:https://aigc-files.bigmodel.cn/api/cogview/20250615154053a589fe6d68174c19_0.png
cjpm run finished
生成的图像如下,感觉比硅基流动的模型好一些:
结束语
通过本文的实践指南,我们不仅掌握了质谱AI文生图API的核心调用方法(包括模型选择、质量参数调优和尺寸定制),更成功解决了Cangjie Magic框架中的兼容性挑战:通过新增ZhipuAIImageModel
模块,重构模型管理器,并实现专属响应解析逻辑。