信号与系统(19)-连续时间系统的复频域分析:拉普拉斯反变换之留数法

留数法的基本思想是将复平面中的线积分问题转化为围线积分,从而可以用复变函数中的留数定理直接求得结果,从而避免求积分

1. 留数及留数定理

留数和留数定理是复变函数中的内容,这里对留数和留数定理做简单的复习,方便后续理解和计算拉普拉斯反变换。

1.1 留数

z 0 z_0 z0是复函数 f ( z ) f(z) f(z)孤立奇点,且 f ( z ) f(z) f(z)在环域 0 < ∣ z − z 0 ∣ < R 0<|z-z_0|<R 0<zz0<R处处解析,C是D内环绕 z 0 z_0 z0的任意一个简单闭合曲线,则称积分:
1 2 π j ∮ c f ( z ) d z \frac{1}{2\pi j}\oint_{c}f(z)dz 2πj1cf(z)dz
为复函数** f ( z ) f(z) f(z) z 0 z_0 z0点的留数**。记为: R e s [ f ( z ) , z 0 ] Res[f(z), z_0] Res[f(z),z0] R e s ( z 0 ) Res(z_0) Res(z0)

  • 处处解析:在环域 0 < ∣ z − z 0 ∣ < R 0<|z-z_0|<R 0<zz0<R内处处解析,即除了在点 z 0 z_0 z0外,复函数 f ( z ) f(z) f(z)在这个点周围(邻域)处处可导。
  • 简单闭合曲线:如下图所示:
  • 孤立奇点:孤立奇点分为可去奇点极点本性奇点三种,他们的区别如下:

    • 可去奇点:即 lim ⁡ z → z 0 f ( z ) \lim_{z \rightarrow z_0}f(z) limzz0f(z)存在极限且极限为有限值的点。也就是说这个奇点没办法使得函数 f ( z ) f(z) f(z)趋于无穷,但是这个点可以算做是一个极点,但是是一个定义上的极点,可以去掉。

    • 极点:即 lim ⁡ z → z 0 f ( z ) \lim_{z \rightarrow z_0}f(z) limzz0f(z)存在极限且极限为 ∞ \infty 的点。极点分为一级极点、二级极点……m级极点,其定义为:

      z 0 z_0 z0为函数 f ( z ) f(z) f(z)的m级极点,则充要条件为: f ( n ) ( z 0 ) ≠ 0 f^{(n)}(z_0)\neq 0 f(n)(z0)=0 n = 0 , 1 , 2 , ⋯ m − 1 n=0,1,2,\cdots m-1 n=0,1,2,m1,且 f ( m ) = 0 f^{(m)}=0 f(m)=0

    • 本性奇点:即 lim ⁡ z → z 0 f ( z ) \lim_{z \rightarrow z_0}f(z) limzz0f(z)不存在极限的点

如:对于下面的两个复函数
f 1 ( z ) = z − 3 ( z 2 − 9 ) ( z − 1 ) 3 ,   f 2 ( z ) = e 1 z f_1(z)=\frac{z-3}{(z^2-9)(z-1)^3}, \space f_2(z)=e^{\frac{1}{z}} f1(z)=(z29)(z1)3z3 f2(z)=ez1

  • f 1 ( z ) f_1(z) f1(z) z = 3 z=3 z=3为可去奇点
  • f 1 ( z ) f_1(z) f1(z) z = − 3 z=-3 z=3为一级极点
  • f 1 ( z ) f_1(z) f1(z) z = 1 z=1 z=1为三级极点
  • f 2 ( z ) f_2(z) f2(z) z = 0 z=0 z=0为本性奇点

1.2 留数的计算

根据奇点类型的不同,计算方式也不同,

  1. 若奇点为可去奇点,则 R e s [ f ( z ) , z 0 ] = 0 Res[f(z),z_0]=0 Res[f(z),z0]=0
  2. 若奇点为极点:
    1. 若为一级极点: R e s ( f ( z ) , z 0 ) = lim ⁡ z → z 0 ( z − z 0 ) f ( z ) Res(f(z),z_0)=\lim_{z\rightarrow z_0}(z-z_0)f(z) Res(f(z),z0)=limzz0(zz0)f(z)
    2. 若为m级奇点: R e s [ f ( z ) , z ) ] = 1 ( m − 1 ) ! lim ⁡ z → z 0 [ ( z − z 0 ) m f ( z ) ] ( m − 1 ) Res[f(z),z_)]=\frac{1}{(m-1)!}\lim_{z\rightarrow z_0}[(z-z_0)^mf(z)]^{(m-1)} Res[f(z),z)]=(m1)!1limzz0[(zz0)mf(z)](m1)

本性奇点在信号处理过程中不常见,,其计算需要通过洛朗展开,然后对负一次幂项的系数进行求解,相对复杂,这里不做讨论。

1.2 留数定理

设函数 f ( z ) f(z) f(z)在区域D内除了有限个孤立奇点 z 1 , z 2 , ⋯ z n z_1,z_2,\cdots z_n z1,z2,zn外处处解析,C是区域D内包围诸奇点的一条正向简单闭合曲线,则
∮ c f ( z ) d z = 2 π j ∑ k = 1 n Res ⁡ ( f ( z ) , a k ) \oint_{c} f(z) d z=2 \pi j \sum_{k=1}^{n} \operatorname{Res}\left(f(z), a_{k}\right) cf(z)dz=2πjk=1nRes(f(z),ak)
即:函数 f ( z ) f(z) f(z)沿曲线C的积分,等于函数 f ( z ) f(z) f(z)在曲线C内的留数的和乘以 2 π j 2\pi j 2πj。。

从上式可以看出,留数定理提供了一种计算积分的方法,该方法将积分转化为对留数的求解。观察对比拉普拉斯反变换的形式:
f ( t ) = L − 1 { F ( s ) } = 1 2 π j ∫ σ − j ∞ σ + j ∞ F ( s ) e s t d s f(t)=L^{-1}\{F(s)\}=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} F(s) e^{s t} d s f(t)=L1{F(s)}=2πj1σjσ+jF(s)estds
可知,该定理可以为计算拉普拉斯反变换提供方便,因为拉普拉斯反变换中的 1 2 π j \frac{1}{2\pi j} 2πj1可以被留数定理中的 2 π j 2\pi j 2πj约分去掉。

2. 留数法在拉普拉斯反变换求解中的应用

为了将留数定理应用到求解拉普拉斯反变换中,应回答以下几个问题:

  1. 如何构造一个单向简单闭合曲线积分,从而把拉普拉斯反变换中的线积分转化为一个环路积分,并且环路积分结果和原来的线积分结果相同?
  2. 这种方法的使用条件是什么?

首先关注第一个问题:如何构造一个单向简单闭合曲线积分,从而把拉普拉斯反变换中的线积分转化为一个环路积分,并且环路积分结果和原来的线积分结果相同?

拉普拉斯反变换的线积分如下图所示:

即积分限为沿 ( σ − j ∞ , σ + j ∞ ) (\sigma-j \infty,\sigma+j \infty) (σj,σ+j)的一个积分。为了将这个积分限包含在新构建的曲线积分中,可以在 s s s平面做一个以原点为圆心,半径为 R R R的圆,并且与 R e ( s ) = σ Re(s)=\sigma Re(s)=σ相交于点 A A A B B B,如下图所示:

随着半径R的不断增大至无穷, I m ( A ) Im(A) Im(A) I m ( B ) Im(B) Im(B)将沿着 R e ( s ) = σ Re(s)=\sigma Re(s)=σ向两端延伸至无穷。由此,由 A C B A ACBA ACBA A C ′ B A AC'BA ACBA构成的曲线,既是一个简单闭合曲线,又包含了原线积分的积分限,如下图所示:

图中红色围成的闭合曲线,以及蓝色围成的闭合曲线,随着原的半径R增大至无穷,这两个曲线均包含了原来的积分限 ( σ − j ∞ , σ + j ∞ ) (\sigma-j \infty,\sigma+j \infty) (σj,σ+j)

那么如何使得通过新构造的积分曲线的积分结果,和通过拉普拉斯反变换的积分限得到的积分结果相同呢

答案显而易见,只需要使得曲线中除 A B AB AB之外的部分,即 A C B ACB ACB A C ′ B AC'B ACB积分值为零即可。此时的对曲线 A C B A ACBA ACBA A C ’ B A AC’BA ACBA的积分就等于对 A B AB AB的积分,即:
∮ A C B A F ( s ) e s t d s = ∫ B A F ( s ) e s t d s \oint_{ACBA}F(s)e^{st}ds = \int_{B}^{A}F(s)e^{st}ds ACBAF(s)estds=BAF(s)estds
其中 A = σ + j ∞ A=\sigma+j \infty A=σ+j B = σ − j ∞ B=\sigma-j \infty B=σj

那么如何使得曲线中除 A B AB AB之外的部分积分值为零呢?并且积分路径既可以是蓝色部分,也可以是红色部分,应该使用哪一个曲线进行积分呢?约当辅助定理给出了答案:

约当辅助定理如下

如果 F ( s ) F(s) F(s)为信号 f ( t ) f(t) f(t)的拉普拉斯变换,当 F ( s ) F(s) F(s)满足这两个条件:

  1. lim ⁡ ∣ s ∣ → ∞ \lim_{\vert s \vert \rightarrow \infty} lims=0;

  2. e s t e^{st} est中的实部 R e ( s t ) < σ 0 t Re(st)<\sigma_0 t Re(st)<σ0t

时,存在:
lim ⁡ R → ∞ ∫ A C B F ( s ) e s t d s = 0 , 或 lim ⁡ R → ∞ ∫ A C ‘ B F ( s ) e s t d s = 0 \lim_{R\rightarrow \infty}\int_{ACB}F(s)e^{st}ds=0, 或\lim_{R\rightarrow \infty}\int_{AC‘B}F(s)e^{st}ds=0 RlimACBF(s)estds=0,RlimACBF(s)estds=0
当满足约当辅助定理的两个条件时,环路积分 A C B A ACBA ACBA A C ′ B A AC'BA ACBA曲线部分,即 A C B ACB ACB A C ′ B AC'B ACB的积分为0,此时的环路积分的积分限得到的积分就等于对 A B AB AB的积分,也就是原拉普拉斯反变换的积分限得到的积分。

那么这里存在两个积分,应该使用哪一个积分来计算呢?约当辅助定理中的第二个条件,即:
R e ( s t ) < σ 0 t Re(st)<\sigma_0 t Re(st)<σ0t
由于 t t t在复频域中相对 s s s而言,可以看做一个常数,因此第二个条件可以写为:
t ⋅ R e ( s ) < σ 0 ⋅ t t\cdot Re(s)<\sigma_0\cdot t tRe(s)<σ0t
因此:

  1. t > 0 t>0 t>0时, R e ( s ) < σ 0 Re(s)<\sigma_0 Re(s)<σ0,计算时需要使用沿AB左边,即 A C B ACB ACB的积分曲线计算积分,即:

lim ⁡ R → ∞ ∫ A C B F ( s ) e s t d s = 0 \lim_{R\rightarrow \infty}\int_{ACB}F(s)e^{st}ds=0 RlimACBF(s)estds=0

  1. t < 0 t<0 t<0时, R e ( s ) > σ 0 Re(s)>\sigma_0 Re(s)>σ0,计算时需要使用沿AB右边,即 A C ’ B AC’B ACB的积分曲线计算积分,即:

lim ⁡ R → ∞ ∫ A C ′ B F ( s ) e s t d s = 0 \lim_{R\rightarrow \infty}\int_{AC'B}F(s)e^{st}ds=0 RlimACBF(s)estds=0

由此得出了新的求解拉普拉斯反变换的方法——留数法,即:

f ( t ) f(t) f(t)的拉普拉斯变换为 F ( s ) F(s) F(s),且 F ( s ) F(s) F(s)满足约当辅助定理,则原函数 f ( t ) f(t) f(t)可以通过求解留数的方法求得:
f ( t ) = L − 1 { F ( s ) } = 1 2 π j ∫ σ − j ∞ σ + j ∞ F ( s ) e s t d s = 1 2 π j ⋅ ∮ c F ( s ) e s t d s = 1 2 π j ⋅ 2 π j ∑ R e ( s i ) = ∑ 曲 线 c 内 所 有 极 点 R e [ F ( s ) e s t , s i ] \begin{aligned} f(t)&=L^{-1}\{F(s)\} \\&=\frac{1}{2 \pi j} \int_{\sigma-j \infty}^{\sigma+j \infty} F(s) e^{s t} d s \\&=\frac{1}{2 \pi j}\cdot \oint_{c}F(s)e^{st}ds \\&=\frac{1}{2 \pi j}\cdot 2 \pi j \sum Re(s_i) \\&=\sum_{曲线c内所有极点} Re[F(s)e^{st},s_i] \end{aligned} f(t)=L1{F(s)}=2πj1σjσ+jF(s)estds=2πj1cF(s)estds=2πj12πjRe(si)=线cRe[F(s)est,si]
其中曲线 c c c,当 t > 0 t>0 t>0时,为包围了在 R e ( s ) = σ Re(s)=\sigma Re(s)=σ左边的, F ( s ) e s t F(s)e^{st} F(s)est所有极点的闭合曲线,在单边拉普拉斯变换中,因为仅仅考虑 t > 0 t>0 t>0,因此在应用留数定理计算积分时,仅需考虑积分线 R e ( s ) = σ Re(s)=\sigma Re(s)=σ左边的所有极点的留数,即:
f ( t ) = L − 1 { F ( s ) } = 1 2 π j ⋅ ∮ c F ( s ) e s t d s = ∑ 积 分 线 R e ( s ) = σ 左 边 所 有 极 点 R e [ F ( s ) e s t , s i ] \begin{aligned} f(t)&=L^{-1}\{F(s)\} \\&=\frac{1}{2 \pi j}\cdot \oint_{c}F(s)e^{st}ds \\&=\sum_{积分线Re(s)=\sigma 左边所有极点} Re[F(s)e^{st},s_i] \end{aligned} f(t)=L1{F(s)}=2πj1cF(s)estds=线Re(s)=σRe[F(s)est,si]
其中 F ( s ) e s t F(s)e^{st} F(s)est的极点就是 F ( s ) F(s) F(s)的极点。

注意: F ( s ) F(s) F(s)不满足约当辅助定理的第一个条件时,拉普拉斯反变换不能通过留数法求解,并且如果 F ( s ) F(s) F(s)的分子的阶数大于分母时,即 m ≥ n m\geq n mn时,需要先通过长除法进行处理,分解为一个多项式和真分式,再进行留数法的求解

3. 总结

这里对留数法求解单边拉普拉斯反变换的求解进行总结:

  1. 根据建模得到关于系统的拉普拉斯表达式 F ( s ) = N ( s ) D ( s ) F(s)=\frac{N(s)}{D(s)} F(s)=D(s)N(s)
  2. D ( s ) = 0 D(s)=0 D(s)=0,求解极点 s 1 , s 2 , ⋯ s k s_1, s_2, \cdots s_k s1,s2,sk
  3. 由于是单边拉普拉斯变换,因此使用留数定理求解拉普拉斯反变换时,仅需考虑积分线 R e ( s ) = σ Re(s)=\sigma Re(s)=σ左边的所有极点的留数,即:
  • s k s_k sk F ( s ) F(s) F(s)的一阶极点时,其留数为:
    R e s [ F ( s ) e s t , s k ] = [ ( s − s k ) F ( s ) e s t ] ∣ s = s k Res[F(s)e^{st}, s_k]=[(s-s_k)F(s)e^{st}]|_{s=s_k} Res[F(s)est,sk]=[(ssk)F(s)est]s=sk
  • s k s_k sk F ( s ) F(s) F(s)的n阶极点时,其留数为:
    R e s [ F ( s ) e s t , s k ] = [ 1 ( n − 1 ) ! d n − 1 d s n − 1 ( s − s k ) n F ( s ) e s t ] ∣ s = s k Res[F(s)e^{st}, s_k]=[\frac{1}{(n-1)!}\frac{d^{n-1}}{ds^{n-1}}(s-s_k)^nF(s)e^{st}]|_{s=s_k} Res[F(s)est,sk]=[(n1)!1dsn1dn1(ssk)nF(s)est]s=sk
  1. 则单边的拉普拉斯反变换为:

f ( t ) = L − 1 { F ( s ) } = ∑ 积 分 线 R e ( s ) = σ 左 边 所 有 极 点 R e [ F ( s ) e s t , s i ] \begin{aligned} f(t)&=L^{-1}\{F(s)\} =\sum_{积分线Re(s)=\sigma 左边所有极点} Re[F(s)e^{st},s_i] \end{aligned} f(t)=L1{F(s)}=线Re(s)=σRe[F(s)est,si]

举例:求解下列单边拉普拉斯变换的反变换
F ( s ) = s 3 s 2 + 3 s + 2 , 收 敛 于 为 R e ( s ) = σ > − 1 F(s)=\frac{s^3}{s^2+3s+2}, 收敛于为Re(s)=\sigma>-1 F(s)=s2+3s+2s3,Re(s)=σ>1
由于分子的阶数大于分母,因此需要通过长除法进行处理,上式可以化简为:
F ( s ) = s − 3 + 7 s + 6 s 2 + 3 s + 2 F(s)=s-3+\frac{7s+6}{s^2+3s+2} F(s)=s3+s2+3s+27s+6
其中 F 1 ( s ) = N 1 ( s ) D 1 ( s ) = 7 s + 6 s 2 + 3 s + 2 F_1(s)=\frac{N_1(s)}{D_1(s)}=\frac{7s+6}{s^2+3s+2} F1(s)=D1(s)N1(s)=s2+3s+27s+6为真分式,且满足约当辅助定理, M ( s ) = s − 3 M(s)=s-3 M(s)=s3多项式,再令 D 1 ( s ) = s 2 + 3 s + 2 = 0 D_1(s)=s^2+3s+2=0 D1(s)=s2+3s+2=0,求得极点:
s 1 = − 1 , s 2 = − 2 s_1=-1, s_2=-2 s1=1,s2=2
由收敛域可知,两个极点都在 R d ( s ) = σ Rd(s)=\sigma Rd(s)=σ的左边,如下图所示:

因此应用留数定理
L − 1 { F 1 ( s ) } = R e s [ F 1 ( s ) e s t , s 1 ] + R e s [ F 1 ( s ) e s t , s 2 ] = [ ( s − s 1 ) F 1 ( s ) e s t ] ∣ s = s 1 + [ ( s − s 2 ) F 1 ( s ) e s t ] ∣ s = s 2 = [ ( s + 1 ) ⋅ 7 s + 6 ( s + 1 ) ( s + 2 ) ⋅ e s t ] ∣ s = − 1 + [ ( s + 2 ) ⋅ 7 s + 6 ( s + 1 ) ( s + 2 ) ⋅ e s t ] ∣ s = − 2 = ( − e − t + 8 e − 2 t ) ⋅ ε ( t ) \begin{aligned} L^{-1}\{F_1(s)\}&=Res[F_1(s)e^{st}, s_1]+Res[F_1(s)e^{st}, s_2] \\&=[(s-s_1)F_1(s)e^{st}]|_{s=s_1}+[(s-s_2)F_1(s)e^{st}]|_{s=s_2} \\&=[(s+1)\cdot \frac{7s+6}{(s+1)(s+2)}\cdot e^{st}]|_{s=-1}+[(s+2)\cdot\frac{7s+6}{(s+1)(s+2)}\cdot e^{st}]|_{s=-2} \\&=(-e^{-t}+8e^{-2t})\cdot \varepsilon(t) \end{aligned} L1{F1(s)}=Res[F1(s)est,s1]+Res[F1(s)est,s2]=[(ss1)F1(s)est]s=s1+[(ss2)F1(s)est]s=s2=[(s+1)(s+1)(s+2)7s+6est]s=1+[(s+2)(s+1)(s+2)7s+6est]s=2=(et+8e2t)ε(t)
接着对多项式 M ( s ) = s − 3 M(s)=s-3 M(s)=s3求解反变换:
L − 1 { M ( s ) } = δ ′ ( t ) − 3 δ ( t ) L^{-1}\{M(s)\}=\delta'(t)-3\delta(t) L1{M(s)}=δ(t)3δ(t)
因此最终的拉式反变换为:
f ( t ) = L − 1 { M ( s ) } + L − 1 { F ( s ) } = δ ′ ( t ) − 3 δ ( t ) − e − t ε ( t ) + 8 e − 2 t ε ( t ) \begin{aligned} f(t)&=L^{-1}\{M(s)\}+L^{-1}\{F(s)\} \\&=\delta'(t)-3\delta(t)-e^{-t}\varepsilon(t) +8e^{-2t}\varepsilon(t) \end{aligned} f(t)=L1{M(s)}+L1{F(s)}=δ(t)3δ(t)etε(t)+8e2tε(t)

对比上一篇计算的结果可知,计算结果是一样的。

问题:分部分式分解法和留数法有什么区别呢?
  1. 分部分式只能解决有理函数,而留数法不受限制
  2. 留数法无法解决当拉普拉斯变换表达式的分子阶数高于分母的情况,部分分式法可以
  3. 留数法要比分部分式法在数学上严格
  4. 分部分式比留数法涉及到的数学知识简单

4. 拉普拉斯反变换求解思路整体归纳

为方便记忆和求解拉普拉斯反变换,现将分部分式分解法和留数法的思路总结如下:

谢谢阅读,如有不当之处欢迎批评指正!

  • 42
    点赞
  • 121
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值