mobilenetv1-v2-v3 - shufflenet

之前收藏的各种卷积放在这里,还挺有用的

mobilenetv1:

https://zhuanlan.zhihu.com/p/31551004https://zhuanlan.zhihu.com/p/31551004

深度可分离卷积、

两个网络瘦身算子width multiplier和resolution multiplier,分别用于减少通道数和特征图宽度

mobilenetv2:

https://blog.csdn.net/u011995719/article/details/79135818https://blog.csdn.net/u011995719/article/details/79135818

根据自身网络的特点,将resnet的残差特性加入到了自己的网络中,主要是反其道而行之,

有关1*1的卷积是怎么调整通道数的 为什么要分别使用1*1,3*3,1*1的卷积核进行降维和升维_Cool_Uncle的博客-CSDN博客_1*1卷积核降维

主要是出于一种信息整合的目的,使用1*1的卷积组都能起到信息整合的作用。

mobileNetv3

https://blog.csdn.net/Chunfengyanyulove/article/details/91358187

我决定那些空间搜索就不管了,也用不上,具体的设计能看懂,那个激活函数看起来很奇怪,但不知道为什么这么设计的。

SeNet : 不知道senet为什么这么设计,这么设计为什么就有用了,总是是先用一个全局平均池化,然后两个全连接提取特征(这里得到了attention),然后与原特征图相乘

———————————————————————————————————————————

shufflenet

  • 主要的创新在于将1*1的pointwise convlution 改为了group的形式,降低计算量
  • 采用channel shuffe以融合不同channel的特征,防止出现边界效应
  • 对比了不同的group大小对网络性能的影响

文中关键的一句话:

在限定complexity的情况下,通过改变group(g)的数量来改变output channel的数量,更多的output channel一般而言可以提取更多的特征

这里面提到shufnet适合amd架构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值