mobilenetv1:
https://zhuanlan.zhihu.com/p/31551004https://zhuanlan.zhihu.com/p/31551004
深度可分离卷积、
两个网络瘦身算子width multiplier和resolution multiplier,分别用于减少通道数和特征图宽度
mobilenetv2:
根据自身网络的特点,将resnet的残差特性加入到了自己的网络中,主要是反其道而行之,
有关1*1的卷积是怎么调整通道数的 为什么要分别使用1*1,3*3,1*1的卷积核进行降维和升维_Cool_Uncle的博客-CSDN博客_1*1卷积核降维
主要是出于一种信息整合的目的,使用1*1的卷积组都能起到信息整合的作用。
mobileNetv3
https://blog.csdn.net/Chunfengyanyulove/article/details/91358187
我决定那些空间搜索就不管了,也用不上,具体的设计能看懂,那个激活函数看起来很奇怪,但不知道为什么这么设计的。
SeNet : 不知道senet为什么这么设计,这么设计为什么就有用了,总是是先用一个全局平均池化,然后两个全连接提取特征(这里得到了attention),然后与原特征图相乘
———————————————————————————————————————————
- 主要的创新在于将1*1的pointwise convlution 改为了group的形式,降低计算量
- 采用channel shuffe以融合不同channel的特征,防止出现边界效应
- 对比了不同的group大小对网络性能的影响
文中关键的一句话:
在限定complexity的情况下,通过改变group(g)的数量来改变output channel的数量,更多的output channel一般而言可以提取更多的特征