查看pytorch运行时真正调用的cuda版本

本文介绍了如何正确地查看Pytorch实际使用的CUDA版本及其目录。通过输出cpp_extension.py中的CUDA_HOME变量来确定Pytorch运行时所依赖的CUDA版本,并指出使用torch.version.cuda命令获取的版本可能与实际运行时版本不同。
摘要由CSDN通过智能技术生成

一般情况我们会安装使用多个cuda版本。而且pytorch在安装时也会自动安装一个对应的版本。

正确查看方式:

想要查看 Pytorch 实际使用的运行时的 cuda 目录,可以直接输出之前介绍的 cpp_extension.py 中的 CUDA_HOME 变量。

import torch
import torch.utils
import torch.utils.cpp_extension

torch.utils.cpp_extension.CUDA_HOME        #输出 Pytorch 运行时使用的 cuda 

在这里插入图片描述
上面输出的/usr/local/cuda即为软链接的cuda版本。

不正确查看方式

事实上,使用torch,version.cuda命令查看输出的 cuda 的版本并不一定是 Pytorch 在实际系统上运行时使用的 cuda 版本,而是编译该 Pytorch release 版本时使用的 cuda 版本。
在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值