一般情况我们会安装使用多个cuda版本。而且pytorch在安装时也会自动安装一个对应的版本。
正确查看方式:
想要查看 Pytorch 实际使用的运行时的 cuda 目录,可以直接输出之前介绍的 cpp_extension.py 中的 CUDA_HOME 变量。
import torch
import torch.utils
import torch.utils.cpp_extension
torch.utils.cpp_extension.CUDA_HOME #输出 Pytorch 运行时使用的 cuda
上面输出的/usr/local/cuda
即为软链接的cuda版本。
不正确查看方式
事实上,使用torch,version.cuda
命令查看输出的 cuda 的版本并不一定是 Pytorch 在实际系统上运行时使用的 cuda 版本,而是编译该 Pytorch release 版本时使用的 cuda 版本。