说明:
为了用BDD100K数据集训练YOLOV5模型,首先需要将BDD100K数据集格式转成YOLOV5支持的输入格式。转换代码如下:
一、BDD100K转YOLO格式
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import re
import os
import json
def search_file(data_dir, pattern=r'\.jpg$'):
root_dir = os.path.abspath(data_dir)
for root, dirs, files in os.walk(root_dir):
for f in files:
if re.search(pattern, f, re.I):
abs_path = os.path.join(root, f)
# print('new file %s' % absfn)
yield abs_path
class Bdd2yolov5:
def __init__(self):
self.bdd100k_width = 1280
self.bdd100k_height = 720
# self.select_categorys = ["person", "car", "bus", "truck"]
# self.cat2id = {
# "person": 0,
# "car": 1,
# "bus": 1,
# "truck": 1
# }
self.select_categorys = ["traffic sign", "tf_green", "tf_yellow", "tf_red", "tf_none"] # 要用到的类别名称
self.cat2id = {
"traffic sign": 0,
"tf_green": 1,
"tf_yellow": 2,
"tf_red": 3,
"tf_none": 4
}
@property
def all_categorys(self):
return ["person", "rider", "car", "bus", "truck", "bike",
"motor", "traffic light", "traffic sign", "train"]
def _filter_by_attr(self, attr=None):
if attr is None:
return False
# 过滤掉晚上的图片
if attr['timeofday'] == 'night':
return True
return False
def _filter_by_box(self, w, h):
# size ratio
# 过滤到过于小的小目标
threshold = 0.001
if float(w * h) / (self.bdd100k_width * self.bdd100k_height) < threshold:
return True
return False
def bdd2yolov5(self, path, save_txt_path): # 输入一张图片的标签
lines = ""
with open(path) as fp:
j = json.load(fp)
# if self._filter_by_attr(j['attributes']): # 过滤掉晚上的图片
# return
for fr in j["frames"]:
dw = 1.0 / self.bdd100k_width
dh = 1.0 / self.bdd100k_height
for obj in fr["objects"]:
category = obj["category"]
if (category == "traffic light"):
color = obj['attributes']['trafficLightColor']
category = "tf_" + color
if category in self.select_categorys:
idx = self.cat2id[category]
cx = (obj["box2d"]["x1"] + obj["box2d"]["x2"]) / 2.0
cy = (obj["box2d"]["y1"] + obj["box2d"]["y2"]) / 2.0
w = obj["box2d"]["x2"] - obj["box2d"]["x1"]
h = obj["box2d"]["y2"] - obj["box2d"]["y1"]
if w <= 0 or h <= 0:
continue
# if self._filter_by_box(w, h): # 过滤掉过于小的小目标
# continue
# 根据图片尺寸进行归一化
cx, cy, w, h = cx * dw, cy * dh, w * dw, h * dh
line = f"{idx} {cx:.6f} {cy:.6f} {w:.6f} {h:.6f}\n"
lines += line
if len(lines) != 0:
# 转换后的以*.txt结尾的标注文件放到指定目录save_txt_path位置
yolo_txt = path.replace(".json", ".txt")
yolo_txt = os.path.join(save_txt_path, yolo_txt.rsplit("/", 1)[-1])
with open(yolo_txt, 'w') as fp2:
fp2.writelines(lines)
# print("%s has been dealt!" % path)
if __name__ == "__main__":
bdd_label_dir = "/home/wsy/data/BDD100K/bdd100k_labels/bdd100k/labels/100k/val"
save_txt_path = "/home/wsy/data/BDD100K/save_temp/val" # 指定转换后生成的文件存储的目录
cvt = Bdd2yolov5()
for path in search_file(bdd_label_dir, r"\.json$"):
cvt.bdd2yolov5(path, save_txt_path)
二、需要喂入YOLOV5网络训练时要指定的train.txt和val.txt生成
前提了解:
在data.yaml文件中没有定义labels的路径,那么 YOLOV5是怎么定义label路径的呢?
如果图片的路径为:
…/coco128/images/train2017/img001.jpg
那么labels必须为:
…/coco128/labels/train2017/img001.txt
一张图片对应一个txt文件,路径除了将最后一个images换成labels,没有任何不同不然就会找不到labels。
生成train.txt和val.txt,代码如下:
train.txt文件里每一行代表每张训练图片的具体路径。
val.txt文件里每一行代表每张验证图片的具体路径。
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
if __name__ == '__main__':
# 所有训练标签的文件夹路径
path_label_files_train = "/home/wsy/data/BDD100K/dataSets/labels/train"
path_label_files_val = "/home/wsy/data/BDD100K/dataSets/labels/val"
# single_label_path = "/home/wsy/code/yolov5-6.1/BDD100_data/labels_traffic_sign_train/468724af-6af83d8d.txt"
# 训练图像数据集和验证图像数据集的文件夹路径
train_imageSet_file_path = "/home/wsy/data/BDD100K/dataSets/images/train"
val_imageSet_file_path = "/home/wsy/data/BDD100K/dataSets/images/val"
# print(labels_lists)
# 存储训练图像、验证图像数据集路径的文件
train_image_lists = "/home/wsy/code/yolov5-6.1/BDD100_data/ImageSets_path/train.txt"
val_image_lists = "/home/wsy/code/yolov5-6.1/BDD100_data/ImageSets_path/val.txt"
if not os.path.exists(train_image_lists):
os.system(r"touch {}".format(train_image_lists))
if not os.path.exists(val_image_lists):
os.system(r"touch {}".format(val_image_lists))
labels_train_lists = os.listdir(path_label_files_train) # 读取所有标签文件名并存在一个列表当中
labels_val_lists = os.listdir(path_label_files_val) # 读取所有标签文件名并存在一个列表当中
# 训练集标签集合文件生成
with open(train_image_lists, 'w') as file_train:
for label in labels_train_lists:
label_name = label.rsplit("/", 1)[-1].split(".")[0] + ".jpg"
line_name = os.path.join(train_imageSet_file_path, label_name)
file_train.write(line_name) # 在txt文件中写入一行内容
file_train.write("\n") # 换行
# 验证集标签集合文件生成
with open(val_image_lists, 'w') as file_val:
for label2 in labels_val_lists:
label_name2 = label2.rsplit("/", 1)[-1].split(".")[0] + ".jpg"
line_name2 = os.path.join(val_imageSet_file_path, label_name2)
file_val.write(line_name2) # 在txt文件中写入一行内容
file_val.write("\n") # 换行