coco2017数据标签格式转到VOC2007格式

以下代码是将coco2017数据集标签格式转到voc2007格式的代码.

# -*- coding: utf-8 -*-
from pycocotools.coco import COCO
import os
import shutil
from tqdm import tqdm
import skimage.io as io
import matplotlib.pyplot as plt
import cv2
from PIL import Image, ImageDraw

savepath = "coco2017toVOC2007/"
datasets_list = ['train2017']  ##运行完之后再改为val2017再运行一次
img_dir = savepath + 'images_train/'  #####这个路径会把你处理的图片拷贝进来,这里只处理了train2017文件夹下的数据,所以处理好之后需要修改生成image文件夹的名称为train2017
anno_dir = savepath + 'annotations_train/'  # 当前目录下会生成annotations文件夹存放xml,结束后修改名称
# classes_names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
#                  'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
#                  'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase',
#                  'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard',
#                  'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
#                  'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake',
#                  'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
#                  'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock',
#                  'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']
classes_names = ['traffic light']
dataDir = 'COCO2017'  ####### 连接到coco的数据集
headstr = """\
<annotation>
    <folder>VOC</folder>
    <filename>%s</filename>
    <source>
        <database>My Database</database>
        <annotation>COCO</annotation>
        <image>flickr</image>
        <flickrid>NULL</flickrid>
    </source>
    <owner>
        <flickrid>NULL</flickrid>
        <name>company</name>
    </owner>
    <size>
        <width>%d</width>
        <height>%d</height>
        <depth>%d</depth>
    </size>
    <segmented>0</segmented>
"""
objstr = """\
    <object>
        <name>%s</name>
        <pose>Unspecified</pose>
        <truncated>0</truncated>
        <difficult>0</difficult>
        <bndbox>
            <xmin>%d</xmin>
            <ymin>%d</ymin>
            <xmax>%d</xmax>
            <ymax>%d</ymax>
        </bndbox>
    </object>
"""

tailstr = '''\
</annotation>
'''


def mkr(path):
    if os.path.exists(path):
        shutil.rmtree(path)
        os.mkdir(path)
    else:
        os.mkdir(path)


mkr(img_dir)
mkr(anno_dir)


def id2name(coco):
    classes = dict()
    for cls in coco.dataset['categories']:
        classes[cls['id']] = cls['name']
    return classes


def write_xml(anno_path, head, objs, tail):
    f = open(anno_path, "w")
    f.write(head)
    for obj in objs:
        f.write(objstr % (obj[0], obj[1], obj[2], obj[3], obj[4]))
    f.write(tail)


def save_annotations_and_imgs(coco, dataset, filename, objs):
    anno_path = anno_dir + filename[:-3] + 'xml'
    print('anno_path:%s' % anno_path)
    # img_path=dataDir+'/'+'images'+'/'+dataset+'/'+filename
    img_path = dataDir + '/' + dataset + '/' + filename
    print('img_path:%s' % img_path)
    print('step3-image-path-OK')
    dst_imgpath = img_dir + filename

    img = cv2.imread(img_path)
    '''if (img.shape[2] == 1):
        print(filename + " not a RGB image")     
        return'''
    print('img_path:%s' % img_path)
    print('dst_imgpath:%s' % dst_imgpath)
    shutil.copy(img_path, dst_imgpath)

    head = headstr % (filename, img.shape[1], img.shape[0], img.shape[2])
    tail = tailstr
    write_xml(anno_path, head, objs, tail)


def showimg(coco, dataset, img, classes, cls_id, show=True):
    global dataDir
    # I=Image.open('%s/%s/%s/%s'%(dataDir,'images',dataset,img['file_name']))
    I = Image.open('%s/%s/%s' % (dataDir, dataset, img['file_name']))  ########may be you can changed
    annIds = coco.getAnnIds(imgIds=img['id'], catIds=cls_id, iscrowd=None)
    anns = coco.loadAnns(annIds)
    objs = []
    for ann in anns:
        class_name = classes[ann['category_id']]
        if class_name in classes_names:
            print(class_name)
            if 'bbox' in ann:
                bbox = ann['bbox']
                xmin = int(bbox[0])
                ymin = int(bbox[1])
                xmax = int(bbox[2] + bbox[0])
                ymax = int(bbox[3] + bbox[1])
                obj = [class_name, xmin, ymin, xmax, ymax]
                objs.append(obj)
                # draw = ImageDraw.Draw(I)
                # draw.rectangle([xmin, ymin, xmax, ymax])
    # if show:
    # plt.figure()
    # plt.axis('off')
    # plt.imshow(I)
    # plt.show()
    return objs


for dataset in datasets_list:
    annFile = '{}/annotations/instances_{}.json'.format(dataDir, dataset)  # 存放json文件的路径
    print('annFile:%s' % annFile)
    coco = COCO(annFile)
    '''
    loading annotations into memory...
    Done (t=0.81s)
    creating index...
    index created!
    '''
    classes = id2name(coco)
    print("classes:%s" % classes)
    classes_ids = coco.getCatIds(catNms=classes_names)
    print(classes_ids)
    for cls in classes_names:
        cls_id = coco.getCatIds(catNms=[cls])
        img_ids = coco.getImgIds(catIds=cls_id)
        print(cls, len(img_ids))
        # imgIds=img_ids[0:10]
        for imgId in tqdm(img_ids):
            img = coco.loadImgs(imgId)[0]
            filename = img['file_name']
            # print(filename)
            objs = showimg(coco, dataset, img, classes, classes_ids, show=False)
            # print(objs)
            save_annotations_and_imgs(coco, dataset, filename, objs)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值