R学习:用REmap生成我们自己的迁徙地图


    R Version 3.4.2。


    开始的几个步骤,跟上一篇一样。

    首先制作我们自己的数据。制作一个csv文件内容如下:


origin,destination
上海,石家庄
武汉,哈尔滨
福州,兰州


    然后导入到R中,

>demoC <- read.table("d:/0R/lx.csv", header=T, sep=",")


    显示一下demoC:
> demoC
  origin destination
1   上海      石家庄
2   武汉      哈尔滨
3   福州        兰州


    可以看到数据导入成功了。

    剩下的步骤就很简单了:

set.seed(125)
out = remap(demoC,title = "REmap",subtitle = "theme:Dark")
plot(out)
summary(out)

    上面的几个命令直接复制到R控制台,就直接打开下面的页面了:





    下面是整个的控制台输入及输出显示内容:

> demoC <- read.table("d:/0R/lx.csv", header=T, sep=",")
> demoC
  origin destination
1   上海      石家庄
2   武汉      哈尔滨
3   福州        兰州
> set.seed(125)
> out = remap(demoC,title = "REmap",subtitle = "theme:Dark")
Warning messages:
1: In get_city_coord(out_list[i], ...) : Please use your own baidu API!
Set it using: options(remap.ak = "XXXXX")
http://lbsyun.baidu.com
2: In get_city_coord(out_list[i], ...) : Please use your own baidu API!
Set it using: options(remap.ak = "XXXXX")
http://lbsyun.baidu.com
3: In get_city_coord(out_list[i], ...) : Please use your own baidu API!
Set it using: options(remap.ak = "XXXXX")
http://lbsyun.baidu.com
4: In get_city_coord(out_list[i], ...) : Please use your own baidu API!
Set it using: options(remap.ak = "XXXXX")
http://lbsyun.baidu.com
5: In get_city_coord(out_list[i], ...) : Please use your own baidu API!
Set it using: options(remap.ak = "XXXXX")
http://lbsyun.baidu.com
6: In get_city_coord(out_list[i], ...) : Please use your own baidu API!
Set it using: options(remap.ak = "XXXXX")
http://lbsyun.baidu.com
> plot(out)
Save img as: C:\Users\User\AppData\Local\Temp\Rtmp8qeind/ID_20171005092742_4569875.html> summary(out)


### 使用R语言绘制基于经纬度的迁移路径地图 为了实现这一目的,`REmap`包是一个理想的选择。此工具允许创建动态的地图来展示不同位置之间的连接情况。 安装并加载必要的库: ```r library(devtools) install_github("Lchiffon/REmap") library(REmap) ``` 准备数据集时,确保每一行代表一次单独的移动事件,至少包含起始点和终点的位置信息。对于本案例而言,假设有一个名为`migration_data`的数据框,其中包含了两列——`origin`(起点)和`destination`(目的地),它们分别记录了每次迁移活动的出发地与抵达地名称[^2]。 构建用于可视化的基础框架如下所示: ```r set.seed(125) # 假设这是你的实际经纬度数据 origins <- c('北京', '上海') destinations <- c('广州', '成都') latitudes_origins <- c(39.9042, 31.2304) # 对应于 origins 的纬度 longitudes_origins <- c(116.4074, 121.4737) # 对应于 origins 的经度 latitudes_destinations <- c(23.1291, 30.6708) # 对应于 destinations 的纬度 longitudes_destinations <- c(113.2644, 104.0668) # 对应于 destinations 的经度 dat <- data.frame( origin=rep(origins, each=length(destinations)), lat_origin=rep(latitudes_origins, each=length(destinations)), lon_origin=rep(longitudes_origins, each=length(destinations)), destination=rep(destinations, times=length(origins)), lat_destination=rep(latitudes_destinations, length.out=length(origins)*length(destinations)), lon_destination=rep(longitudes_destinations, length.out=length(origins)*length(destinations)) ) out <- remap(dat, from='origin', to='destination', latitude.from='lat_origin', longitude.from='lon_origin', latitude.to='lat_destination', longitude.to='lon_destination', title="Migration Paths Visualization", subtitle="Example of Migration Routes Between Cities") plot(out) ``` 上述代码片段展示了如何设置一个简单的例子,这里使用了几组虚拟的城市作为源节点和目标节点,并指定了相应的地理位置坐标以便更精确地描绘出行程路线。最终调用`remap()`函数生成交互式的HTML文件,能够直观呈现这些城市的相互联系状况以及具体的迁徙方向。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值