多元函数的极值及其求法

二元函数的极值问题,一般可以利用偏导数来解决。

必要条件:
设函数z=f(x,y)在点(x0,y0)具有偏导数,且在点(x0,y0)处有极值,则它在该点的偏导数必然为零:
fx ( x0 , y0 )=0, fy ( x0 , y0 )=0

充分条件:
设函数z=f(x,y)在点( x0 , y0 )的某邻域内连续且有一阶及二阶连续偏导数,有 fx ( x0 , y0 )=0, fy ( x0 , y0 )=0,令
fxx( x_0 , y_0)=Af_xy( x0 , y0 )=B
fyy( x_0 , y_0$)=C

则f(x,y)在点(x0, y0 )处是否取得极值的条件如下:
1、AC- B2 >0时具有极值,且当A<0时有极大值,当A>0时有极小值;
2、AC- B2 <0时没有极值
3、AC- B2 =0时可能有极值,也可能没有极值,需另作讨论。

例如求函数 f(x,y)= x3 - y3 +3 x2 +3 y2 -9x的极值:
fx (x,y)=3 x2 +6x-9=0
fy (x,y)=-3 y2 +6y=0
求得驻点为:(1,0),(1,2),(-3,0),(-3,2)
再求出二阶偏导数
fxx(x,y) =6x+6
fxy(x,y) =0
fyy(x,y) =-6y+6

对各驻点进行判断:
在点(1,0)处,AC- B2 =12*6>0,又A>0,所以函数在(1,0)处有极大值f(1,0)=-5,
其他以此类推。

拉格朗日乘数法:
要找函数z=f(x,y)在附加条件 φ (x,y)=0下的可能极值点,可以先构成辅助函数:
F(x,y)=f(x,y)+ λ φ (x,y)
其中 λ 为某一常数。求其对x与y的一阶偏导数,并使之为零,然后与 φ (x,y)=0联立起来:
fx (x,y)+ λ φ x (x,y)=0,
fy (x,y)+ λ φ y (x,y)=0,
φ (x,y)=0

解出x,y及 λ ,则其中x,y就是函数f(x,y)在附加条件

φ (x,y)=0下的可能极值点的坐标。

例如:
求表面积为 a2x,y,z, \varphi$(x,y,z)=2xy+2yz+2xz-a2=0
下,求函数:
V=xyz (x>0,y>0,z>0)
的最大值。

构成辅助函数:
F(x,y,z)=xyz- λ (2xy+2yz+2xz- a2 )

求其对x,y,z的偏导数,并使之为零,得到:
yz+2 λ (y+z)=0
xz+2 λ (x+z)=0
xy+2 λ (y+x)=0

与条件函数一起联合解,得出:
x=y=z= (66) a

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值