【AutoAugment】《AutoAugment:Learning Augmentation Policies from Data》

在这里插入图片描述

arXiv-2018



1 Background and Motivation

CV 社区大部分聚焦于设计更好的网络结构,Less attention has been paid to finding better data augmentation methods that incorporate more invariances(teach a model about invariances in the data domain

作者旨在 automate(Reinforcement Learning) the process of finding an effective data augmentation policy for a target dataset

2 Related Work

3 Advantages / Contributions

automate 数据增广,在多个分类数据集上取得了 SOTA,且 can generalize well across different models and datasets(数据分布还是要有一定的相关性的,此前提下增广策略能屏蔽模型,跨越数据集)

在这里插入图片描述
Despite the observed transferability, we find that policies learned on data distributions closest to the target yield the best performance

4 Method

强化学习(Proximal Policy Optimization algorithm)搜数据增广策略,

搜索空间为

https://pillow.readthedocs.io/en/stable/reference/ImageOps.html(PIL实现)
在这里插入图片描述
ShearX/Y, TranslateX/Y, Rotate, AutoContrast, Invert, Equalize, Solarize, Posterize, Contrast, Color, Brightness, Sharpness, Cutout, Sample Pairing

  • invert 按给定的概率值将部分或全部通道的像素值从 v 设置为 255-v

  • Equalize 直方图均衡化

  • Solarize 在指定的阈值范围内,反转所有的像素点(高于阈值,则255-v)。

    from PIL import Image, ImageOps  
          
    # creating a image1 object  
    im1 = Image.open("1.jpg")  
    im2 = ImageOps.solarize(im1, threshold = 130)  
    im2.show()
    
  • Posterize:保留 Image 各通道像素点数值的高 bits 位

    from PIL import Image, ImageOps     
    im1 = Image.open("1.jpg")  
    im2 = ImageOps.posterize(im1, bits=2)  
    im2.show()
    

    128-64-32-16-8-4-2-1

    bits=1,图像各通道最大值为 128
    bits=2,图像各通道最大值为 128+64 = 192

    依次类推 bits 1~8 对应的图像最大值 128-192-224-240-248-252-254-255

在这里插入图片描述

16 种 data augmentation 方法(不同概率 probability——11个 values uniform spacing,不同参数配置 magnitude——10个等级 uniform spacing),部分增广方法没有 magnitude,eg:invert

每个 sub-policies 两种数据增广方法(16 选 2)串行组合——each sub-policy consisting of two image operations to be applied in sequence

一共会搜索出 5 种 sub-policies,搜索空间大致为 ( ( 16 × 11 × 10 ) 2 ) 5 = ( 16 × 11 × 10 ) 10 = 2.9 × 1 0 32 ((16 \times 11 \times 10)^2)^5 = (16 \times 11 \times 10)^{10} = 2.9 \times 10^{32} ((16×11×10)2)5=(16×11×10)10=2.9×1032

增广形式

训练时,a sub-policie is randomly chosen(5选1) for each image in each mini-batch
在这里插入图片描述

奖励机制,child model(a neural network trained as part of the search process) 的 acc

5 Experiments

5.1 Datasets

  • CIFAR-10,5W,reduced CIFAR-10(which consists of 4,000 randomly chosen examples, to save time for training child models during the augmentation search process)
  • CIFAR-100
  • SVHN,reduced SVHN dataset of 1,000 examples sampled randomly from the core training set.
  • ImageNet,reduced ImageNet,with 120 classes (randomly chosen) and 6,000 samples
  • Stanford Cars
  • FGVC Aircraft

5.2 Experiments and Results

1)CIFAR-10 and CIFAR-100 Results
在这里插入图片描述

选出来比较多的增广方式为 Equalize, AutoContrast, Color, and Brightness,而 ShearX/Y 较少

下面看看结果

在这里插入图片描述
在这里插入图片描述
再看看和半监督方法对比
在这里插入图片描述
作者仅用了 4000 张 labeled samples,半监督方法 use an additional 46,000 unlabeled samples in their training

效果上作者的更好

2)SVHN Results
在这里插入图片描述
Invert, Equalize, ShearX/Y, and Rotate 被选出来的比较多

the specific color of numbers is not as important as the relative color of the number and its background.

在这里插入图片描述
AutoAugment leads to more significant improvements on the reduced dataset than the full dataset(哈哈哈,数据本身才是王道,数据增广也是去增加数据的多样性)

3)ImageNet Results
在这里插入图片描述

focusing on color-based transformations + rotation
在这里插入图片描述
在这里插入图片描述

4)Fine Grained Visual Classification Datasets

用 table 4 的增广策略
在这里插入图片描述
增益效果明显,Stanford Cars 上还是 SOTA

5)Importance of Diversity in AutoAugment Policies

在这里插入图片描述
20 基本最好啦

6 Conclusion(own) / Future work

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值