陶哲轩实分析-第18章 Lebesgue积分

19.1 简单函数

习题
19.1
对于任意x,如果 f(x)=ci g(x)=dj ,那么 f(x)+g(x)=ci+dj ,所有的 ci+d+j 是有限的,所以f+g是简单函数。而 cf 的像集为 cci ,有限。

19.2
Ei={x:f(x)=ci} ,根据函数的定义, Ei 互不相交,那么对于任意x, f(x)=Ni=1ciχi

19.3
先证明单调增
fn(x):=sup{2j2n+1:jZ,2j2n+1min(2n,f(x))}
fn+1(x):=sup{j2n+1:jZ,j2n+1min(2n+1,f(x))}

如果 fn(x) 取值成功为j,那么2j必然满足 fn+1(x) ,j+1不满足 fn(x) ,但是有可能满足 fn+1(x) ,单调性证明完成。
证明逐点收敛性
对于任意固定的x, f(x) 为固定值,而 f(x)fn(x)<2n (如提示所示, fn(x) 为不超过f(x)的 2n 整数倍),n增大以后趋于相等,证明完成

19.2 非负可测函数的积分

习题
19.2.1
(a)->
反证法,如果存在某个测度大于0(不妨设为a)的集合M满足 f(x)>0,xM ,那么 f(x)>ε ,那么 f>aε ,根据命题19.1.10(d)
<-
不会做
(b)
s低于f,则cs低于cf
cf=sup{s:scf}=sup{s:s/cf}=sup{cs:sf} ,然后得出结论,最后一个等式考虑t=s/c可以得出。
(c)
如果s低于f,那么s必然低于g,证明完成
(d)
定义函数h=f-g,那么h几乎处处为0,根据(a)
(e)
考虑函数g(x)=f(x),如果 xΩ ,否则g(x)=0,那么显然低于g的函数必然低于g,所以不等号成立。

19.2.2
如果s下方控制f,t下方控制g,那么s+t必然下方控制f+g,证明完成

19.2.3
根据提示和定理19.2.9立即得出

19.2.4
等号左边等于1,右边等于0
不满足推论19.2.11中的”非负”可测函数

19.2.5
反证法,假设有某个测度为正(假设为a)的集合函数值无限,那么 Ωf 为无限。

19.2.6
反证法,假设有某个测度为正(假设为a)的集合属于 Ωk ,那么 m(Ωk)a× ,与和为有限矛盾。

19.2.7
感觉像数论的题,不会

19.2.8
不会

19.2.9
好复杂

19.2.10
不会

19.2.11
不会

19.3 绝对可积函数的积分

习题
19.3.1
第一个不等式根据19.3.2定义与三角不等式,第二个等式根据引理19.2.10

19.3.2
(a) Ωcf=Ωcf+Ωcf=cΩf+cΩf=cΩf
(b)类似(a)的证明
(c)类似(a)的证明
(d)

19.3.3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值