陶哲轩实分析-第14章 一致收敛

14.1 函数的极限值

习题
14.1.1
根据函数极限值定义,第一个极限要求存在 δ 只要 d(x0,x)<δ ,就有 d(f(x),L)<ε ,而第二个要求 0<d(x0,x)<δ
所以第一个极限能直接推出第二个
而如果第二个极限成立,只需要考虑 d(x0,x)=0 的情况即可,而这种情况 f(x0)f(x0)=0<ε ,证明完成。

14.1.2
(a)->(b)
根据定义,14.1.1,函数极限值在 x0 存在并等于L,则对于 ε ,存在 δ ,只要 d(x,x0)<δ ,就有 d(f(x),f(x0))<ε ,而 x(n) 收敛,则存在N,只要 n>N ,就有 d(x,x0)<δ ,就有 d(f(x(n),L)<ε

(b)->(c)
对于含L的任意开集V,存在 ε B(L,ε)V 。由于 f(x(n)) 收敛,所以存在N,满足如果n>N,则 d(f(x(n)),L)<ε ,其中 x(n) 是任意收敛到 x0 的序列,根据(b),只要 d(x,x0)<δ 即可,我们找到了 U=B(x0,δ)

(c)->(d)
x0 点,有 limg(x)=g(x0)=L ,根据连续函数定义证明完成。

(d)->(a)
g连续,所以 limf(x)=limg(x)=g(x0)=L

14.1.3
c->d
要证明g连续,需要证明 limf(x)=L ,也就是对于任意包含L的开集V,存在包含 x0 的开集W满足如果 xW f(x)V ,这就是c

d->c
如果g连续,那么根据拓扑收敛定义13.5.4,对于任意序列,L的任意领域V,存在N,当n>N,则 f(x(n))V ,其中 x(n) 是任意收敛的序列,也就是存在 x0 的领域W。

如果拓扑空间是Hausdorff空间,根据习题13.5.4,极限值只能有1个,如果不是的话极限值可能有多个。

14.1.4
根据14.1.3意义
an 看做n的函数,那么极限存在就是 a=L ,也就意味着对于包含L的任意开集为 (a<L<b) ,存在含 的开集n,也就是 (N,)

根据13.5.4意义
包含L的任意开集为 (a<L<b) ,极限存在也就意味着存在N,满足如果 nN ,则 a<an<b

14.1.5 类似证明很多了,略。

14.1.6 根据提示

14.2 逐点收敛于一致收敛

习题
14.2.1
d(fan(x),f(x))=d(f(xan),f(x))
等号左边是一致收敛的定义,右边是函数连续的定义,这就同时证明了(a)和(b)。

14.2.2
(a)对于每个 ε ,存在N使得对每个x都满足 d(f(n)(x),

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值