模型评估与优化方法

本文介绍了模型评估的重要方法,如交叉验证,包括K折交叉验证的原理和参数设置。接着讲解了网格搜索如何简化参数调整的过程,通过GridSearchCV类的应用实例展示其优势。此外,还讨论了分类可信度评估,包括predict_proba和decision_function两种方法在不同分类模型中的应用。
摘要由CSDN通过智能技术生成

cross-validation

交叉验证法是一种非常常用的对于模型泛化性能进行评估的方法。在sklearn中默认的使用的是K折交叉验证法,即是将数据集拆分为k个部分,然后1个作为testing set,剩下的k-1个作为training set。然后进行k次的模型训练,最后得到k个模型的评分。
下面介绍一下这个函数的一些常用的参数:
cross_val_score(estimator, X, y=None, groups=None, scoring=None, cv=‘warn’, n_jobs=None, verbose=0, fit_params=None, pre_dispatch=‘2*n_jobs’, error_score=‘raise-deprecating’)
estimator:这个参数主要是用来确定使用哪一个模型进行训练。
X,y:这两个参数就不用说了,就相当于输入和输出。
cv:它可以是一个整数,来指定k值,也可以是一个分割了训练集、数据集的迭代生成器。
n_jobs:使用的cpu核数,建议和自己机器的一致。
下面就介绍一下cv另一种赋值方法:

from sklearn.model_selection import ShuffleSplit
shuffle_split = ShuffleSplit(test_size=.2,train_size=.7,n_splits=10)
scores = cross_val_score(svc,X,y,cv=shuffle_split)
# for i,j in shuffle_sp
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值