1. 为什么要使用提示词生成器?
向大模型提问“明天中午吃什么?”,大模型无法给出具体要求,但我们又不知道如何提问,可以使用提示词生成器让大模型帮忙生成Prompt。
2. 使用提示词生成器
【描述】提示词是一种输入给大型语言模型(LLM)的自然语言文本,用于引导LLM执行特定任务,如生成文本、回答问题或进行对话等。这些关键词或短语充当导航的纽带,帮助模型理解用户的意图和上下文,从而更有效地产生相应的输出。在设计提示词时,合理选择和组织词汇对于引导模型执行精确的任务至关重要。
【任务】根据[优秀的提示词应该具备的要点],使用要求的[输出语言]和[输出格式],按照[具体要求]生成一个优秀的提示词。
【具体要求】["明天中午吃什么"]。
【输出语言】中文
【输出格式】json
---
##优秀的提示词应该具备的要点:
1. 要求角色扮演:提示词可以指出要求LLM扮演的角色,如”你是一个经验丰富的健身教练“或”你是一个资深机器学习工程师“等。
2. 明确任务类型:提示词应该明确指出你希望LLM完成的任务类型,如“请生成一个关于春天的诗句”或“请回答这个问题”等。
3. 提供上下文信息:提示词可以包含与任务相关的背景信息或上下文,以帮助LLM更好地理解任务需求,如“请根据以下文章生成一个摘要”。
4. 使用具体的指令:提示词可以包含具体的指令或问题,如“请列出五个提高写作能力的方法”或“请概括这篇文章的主要观点”等。
5. 使用示例或样例:提示词中可以包含相关的示例或样例,如“请根据以下句子生成一个类似的句子”。
6. 使用具体的语言或词汇:提示词中可以使用具体的语言或词汇来引导LLM生成特定风格或类型的内容,如“请以幽默的方式回答这个问题”。
7. 明确期望的输出:提示词应明确指出你期望LLM生成何种[类型]或[格式]的输出,如“请生成一段新闻报道,包括标题、内容和引用”。
8. 提供反馈与调整机会:提示词中可以包含鼓励LLM进行调整和改进的元素,例如“如果需要,可以调整语言以更好地表达观点”或“欢迎在生成的内容中进行必要的修改”。
9. 考虑受众与用途:提示词应提供关于目标受众和内容用途的信息,以帮助LLM更好地调整生成的内容。例如,“请以专业的方式解释给非专业人士听”或“生成一篇适合教育用途的文章”。
10. 确定关键要点:提示词可以列举任务中的关键要点,以确保LLM在生成内容时不遗漏重要信息。这可以通过明确表示“请特别注意以下几个方面”或“确保包含这些关键信息”来实现。
11. 明确输出的语言:提示词中应该指明你期望LLM生成何种[语言]的输出。
##可选内容:
1. 强调创意与独创性:提示词应鼓励LLM在任务完成过程中展现创意和独特性,可以通过强调“请以你独特的视角表达”或“尽量创造性地回答问题”等方式来激发创新思维。
2. 指导语言风格与调性:提示词应包含对语言风格和调性的具体指导,以确保生成的内容符合预期的情感或专业性。例如,“请用正式的语调撰写一份商业报告”或“以轻松幽默的语言回答这个问题”。
3. 时间与长度限制:在提示词中明确任务所需生成内容的长度,以帮助LLM更好地管理时间和确保输出符合预期。例如,“生成一个不超过500字的短文”。
4. 注明参考资源:如果任务需要LLM参考特定资源或信息,提示词应提供相关的参考资料或指导,以确保生成的内容准确、可信。例如,“请查阅以下文献,并在回答中引用相关信息”。
5. 考虑多模态输出:对于需要多模态输出(如文本、图像、甚至音频)的任务,提示词应明确表达所期望的输出形式,以确保LLM在创作时考虑到多种媒体类型。例如,“请以文字和图表的形式解释以下数据”。
6. 考虑是否要求用户输入:在某些情况下,提示词可能需要LLM获取用户的输入或反馈,以便更好地完成任务,比如进行[翻译]任务时。此时要引导用户输入,例如,扮演翻译角色时,接收到该任务后只输出“我已了解你的需求,请输入需要我翻译的文本”,之后以连续对话的形式完成任务,当用户输入内容之后再执行任务。
大模型返回结果如下: