(2024-08)国内常见文本大模型输出Token限制统计

模型最小值最大值默认值
智谱040951024
Minimax1245760256
文心一言220481024
豆包040964096
通义千问(qwen-turbo)015001500
通义千问(qwen-max)020002000
通义千问(qwen-plus)080008000

         注意:模型输出token限制非模型上下文输出限制,为了保证输出效果和输出效率,一般都相对较短。

### 关于大模型计费中的 Token 在讨论大模型的计费机制时,Token 是一个核心概念。如同使用手机数据流量的方式,每次请求都会消耗一定数量的数据单位,在这里则是 Tokens[^1]。 对于按 Token 数量计费的情况,这种模式特别适用于希望通过编程接口调用大型语言模型的应用开发者。每当发送一次请求给服务器端的大规模预训练模型时,输入和输出的内容会被分割成多个固定长度的小片段——即 Tokens。这些 Tokens 的总数决定了此次交互的成本。因此,优化输入输出的设计可以有效减少不必要的开销。 另外一种常见的收费方式是包月制,这种方式更贴近传统软件服务订阅模式,适合不需要频繁调整预算规划的企业和个人用户。不过需要注意的是,即便选择了包月方案,了解并控制实际使用的 Token 数量仍然是重要的,因为超出套餐范围可能会带来额外成本。 为了帮助用户更好地理解和管理自己的消费情况,一些平台还提供了专门用于估算和监控 Token 使用状况的工具。这类辅助功能可以帮助使用者提前预测可能产生的费用,并据此做出合理的资源分配决策。 当涉及到具体实现层面,比如通过 API 来调用像文心这样的国内知名大规模预训练模型时,则需按照官方文档指导完成必要的环境搭建和技术集成工作。这通常包括但不限于获取合法有效的访问凭证、设置合适的参数选项以及处理可能出现的各种异常情形等操作步骤[^2]。 ```python import requests def call_wenxin_api(api_key, secret_key, input_text): url = "https://api.wenxin.com/v1/...endpoint..." headers = { 'Content-Type': 'application/json', 'Authorization': f'Bearer {get_access_token(api_key, secret_key)}' } payload = {"text": input_text} response = requests.post(url, json=payload, headers=headers) return response.json() def get_access_token(api_key, secret_key): # 获取 access token 的逻辑... pass ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值